Analog Surround Sound Was Everywhere, But You Probably Didn’t Notice

These days, most of the media we consume is digital. We still watch movies and TV shows, but they’re all packaged in digital files that cram in many millions of pixels and as many audio channels as we could possibly desire.

Back in the day, though, engineering limitations meant that media on film or tape were limited to analog stereo audio at best. And yet, the masterminds at Dolby were able to create a surround sound format that could operate within those very limitations, turning two channels in to four. What started out as a cinematic format would bring surround sound to the home—all the way back in 1982!

Continue reading “Analog Surround Sound Was Everywhere, But You Probably Didn’t Notice”

Mushrooms As Computer Memory

Fungi make up a massive, interconnected part of Earth’s ecosystems, yet they’re vastly underrepresented in research and public consciousness compared to plants and animals. That may change in the future though, as a group of researchers at The Ohio State University have found a way to use fungi as organic memristors — hinting at a possible future where fungal networks help power our computing devices.

A memristor is a passive electronic component whose resistance changes based on the voltage and current that has passed through it, which means it can effectively remember past electrical states even when power is removed. To create these circuit components with fungus, the researchers grew shiitake and button mushroom mycelium for these tests, dehydrated their samples for a number of days, and then attached electrodes to the samples. After misting them briefly to restore conductivity, the samples were exposed to various electrical wave forms at a range of voltages to determine how effective they were at performing the duties of a memristor. At one volt these systems were the most consistent, and they were even programmed to act like RAM where they achieved a frequency of almost 6 kHz and an accuracy of 90%.

In their paper, the research group notes a number of advantages to building fungal-based components like these, namely that they are much more environmentally friendly and don’t require the rare earth metals that typical circuit components do. They’re also easier to grow than other types of neural organoids, require less power, weigh less, and shiitake specifically is notable for its radiation resistance as well. Some work needs to be done to decrease the size required, and with time perhaps we’ll see more fungi-based electrical components like these.

Two colored plastic films are loosely tied over the entrances to two plastic containers.

Cooking Up Plastics In The Kitchen

The earliest useful plastics were made out of natural materials like cellulose and casein, but since the Bakelite revolution, their use has dwindled away and left them mostly as curiosities and children’s science experiments. Fortunately, though, the raw materials for bioplastics are readily available in most grocery stores, and as [Ben] from NightHawkInLight demonstrates, it’s still possible to find new uses for them.

His first recipe was for a clear gelatine thermoplastic, using honey as a plasticizer, which he formed into the clear packet around some instant noodles: simply throw the whole packet into hot water, and the plastic dissolves away. With some help from the home bioplastics investigator [Giestas], [Ben] next created a starch-based plastic out of starch, vinegar, and glycerine. Starch is a good infrared emitter in the atmospheric window, and researchers have made a starch-plastic aerogel that radiates enough heat to become cooler than its surroundings. Unfortunately, this requires freeze-drying, and while encouraging freezer burn in a normal freezer can have the same effect, it’ll take a few months to get a usable quantity of the material.

The other problem with starch-based plastics is their tendency to absorb water, at least when paired with plasticizers like glycerine or honey. Bioplastics based on alginate, however, are easy to make waterproof. A solution of sodium alginate, derived from seaweed, reacts with calcium ions to make a cross-linked waterproof film. Unfortunately, the film forms so quickly that it separates the solutions of calcium ions from the alginate, and the reaction stops. To get around this, [Ben] mixed a sodium alginate solution with powdered calcium carbonate, which is insoluble and therefore won’t react. To make the plastic set, he added glucono delta lactone, which slowly breaks down in water to release gluconic acid, which dissolves the calcium carbonate and lets the reaction proceed.

The soluble noodle package reminded us of a similar edible package, which included flavoring in the plastic. We’ve also seen alginate used to make conductive string, and rice used to make 3D printer filament. It’s worth some caution, though – not all biologically-derived plastics are healthier than synthetic materials.

Continue reading “Cooking Up Plastics In The Kitchen”