Sixteen wires of various colors are attached in pairs to record the electrical activity of split gill fungi (Schizophyllum commune) on a mossy, wooden stick. photo by Irina Petrova Adamatzky

Unconventional Computing Laboratory Grows Its Own Electronics

While some might say we’re living in a cyberpunk future already, one technology that’s conspicuously absent is wetware. The Unconventional Computing Laboratory is working to change that.

Previous work with slime molds has shown useful for spatial and network optimization, but mycelial networks add the feature of electrical spikes similar to those found in neurons, opening up the possibility of digital computing applications. While the work is still in its early stages, the researchers have already shown how to create logic gates with these fantastic fungi.

Long-term, lead researcher [Andrew Adamatzky] says, “We can say I’m planning to make a brain from mushrooms.” That goal is quite awhile away, but using wetware to build low power, self-repairing fungi devices of lower complexity seems like it might not be too far away. We think this might be applicable to environmental sensing applications since biological systems are likely to be sensitive to many of the same contaminants we humans care about.

We’ve seen a other efforts in myceliotronics, including biodegradable PCB substrates and attempts to send sensor signals through a mycelial network.

Via Tom’s Hardware.

A notated illustration showing how a mycelial network may be functionalized as a PCB substrate. The process starts with Cu vapor deposition onto the network followed by Au either by more vapor deposition or electrodeposition. Traces are then cut via laser ablation.

MycelioTronics: Biodegradable Electronics Substrates From Fungi

E-waste is one of the main unfortunate consequences of the widespread adoption of electronic devices, and there are various efforts to stem the flow of this pernicious trash. One new approach from researchers at the Johannes Kepler University in Austria is to replace the substrate in electronics with a material made from mycelium skins.

Maintaining performance of ICs and other electronic components in a device while making them biodegradable or recyclable has proved difficult so far. The substrate is the second largest contributor (~37% by weight) to the e-waste equation, so replacing it with a more biodegradable solution would still be a major step toward a circular economy.

To functionalize the mycelial network as a PCB substrate, the network is subjected to Physical Vapor Deposition of copper followed by deposition of gold either by more PVD or electrodeposition. Traces are then cut via laser ablation. The resulting substrate is flexible and can withstand over 2000 bending cycles, which may prove useful in flexible electronics applications.

If you’re looking for more fun with fungi, check out these mycelia bricks, this fungus sound absorber, or this mycellium-inspired mesh network.

Hackaday Links Column Banner

Hackaday Links: August 21, 2022

As side-channel attacks go, it’s one of the weirder ones we’ve heard of. But the tech news was filled with stories this week about how Janet Jackson’s “Rhythm Nation” is actually a form of cyberattack. It sounds a little hinky, but apparently this is an old vulnerability, as it was first noticed back in the days when laptops commonly had 5400-RPM hard drives. The vulnerability surfaced when the video for that particular ditty was played on a laptop, which would promptly crash. Nearby laptops of the same kind would also be affected, suggesting that whatever was crashing the machine wasn’t software related. As it turns out, some frequencies in the song were causing resonant vibrations in the drive. It’s not clear if anyone at the time asked the important questions, like exactly which part of the song was responsible or what the failure mode was on the drive. We’ll just take a guess and say that it was the drive heads popping and locking.

Continue reading “Hackaday Links: August 21, 2022”

Add Mycelium To Your Mesh Networks

In many parts of the world, days after a good rainfall, it’s fairly common to see various species of mushrooms popping up out of the ground. These mysterious organisms aren’t the whole story, though. The living being is a vast network of hidden fibers, called mycelium, spreading through the ground and into any other organic material it can colonize. Its air of mystery and its vast reach are the inspiration for entire Star Trek shows and, of course, projects like this LoRa-based mesh network called Mycelium.

Mycelium is the invention of [Catamine] and includes many novel features compared to more typical mesh networks. For one, it is intended to be used in low power applications to give users the ability to send messages over a distributed network rather than a centralized network like a cell phone service provider. For another, the messages are able to be encrypted and authenticated, which is not currently possible with other mesh networks such as APRS. The idea is that a large network of people with nothing more complicated than an ESP32, an antenna, and this software would be able to communicate securely in situations where a centralized network is not available, whether that is from something like a natural disaster or from a governmental organization disabling the Internet during a political upheval.

The mesh network is currently in active development, and while messages can not yet be sent, the network is able to recognize nodes and maintain a keybase. There are certainly plenty of instances where something like this would be useful as we’ve seen before from other (non-encrypted) LoRa-based network solutions which are built around similar principles.

Thanks to [dearuserhron] for the tip!

A Lecture By A Fun Guy

Many people hear “fungus” and think of mushrooms. This is akin to hearing “trees” and thinking of apples. Fungus makes up 2% of earth’s total biomass or 10% of the non-plant biomass, and ranges from the deadly to the delicious. This lecture by [Justin Atkin] of [The Thought Emporium] is slightly shorter than a college class period but is like a whole semester’s worth of tidbits, and the lab section is about growing something (potentially) edible rather than a mere demonstration. The video can also be found below the break.

Let’s start with the lab where we learn to grow fungus in a mason jar on purpose for a change. The ingredient list is simple.

  • 2 parts vermiculite
  • 1 part brown rice flour
  • 1 part water
  • Spore syringe

Combine, sterilize, cool, inoculate, and wait. We get distracted when cool things are happening so shopping around for these items was definitely hampered by listening to the lecture portion of the video.

Continue reading “A Lecture By A Fun Guy”

Cyborg Mushrooms

Of all the fictional cyborgs who turn against humanity to conquer the planet, this is as far from that possibility as you can get. These harmless mushrooms seem more interested in showing off their excellent fashion sense with a daring juxtaposition of hard grid lines with playful spirals. But the purpose of this bacteria-fungus-technology hybrid is to generate electricity. The mushrooms are there to play nurse to a layer of cyanobacteria, the green gel in the photo, while the straight black lines harvest electricity.

Cyanobacteria do not live very long under these kinds of conditions, so long-term use is out of the question, but by giving the cyanobacteria somewhere it can thrive, the usefulness grows. The interplay between bacterial and supportive organics could lead to advances in sensors and hydrogels as well. At some point, we may grow some of our hardware and a green thumb will be as useful as a degree in computer science.

Hydrogels could be the next medical revolution, and we’ve already made hydrogels into tattoos, used them as forms for artificial muscles, and hydrogels can be a part of soft tissue printing.

Mycelia + Sawdust = House?

Take a guess. What is the featured picture for this article? If you’re channeling your inner Google image recognition, you might say: “Best guess for this image: rock.” But, like Google, you’d be wrong. Instead, what you see are bricks made out of fungi obtained from tissues of mycelia.

By taking fungi obtained from tissues of mycelia and storing them in a jar filled with a growth medium (usually sawdust), MycoWorks is creating all sorts of materials with exciting properties. In just three to seven days, the fungi and sawdust mixture expands and forms into clumps of material, which are then used to create products like handbags, purses, bricks, you name it. According to co-founder Phil Ross, “production of this material is similar to making ravioli from scratch, and the final product is more resilient than concrete.”

The resulting materials are buoyant, self-extinguishing and stress dissipating. Moreover, the bricks are alive up until they are put in a kiln. This means bricks that are placed next to each other will grow together, effectively enabling a structure to be made out of just brick, no mortar. And, while they’re not 3D printed, houses made in this fashion have great potential. If these cool new materials have got you excited, and you want to get cozy with the fungus among us, why not go all out with an automated mushroom cultivator?

Video after the break.

Continue reading “Mycelia + Sawdust = House?”