World’s Largest “Nixie” Clock At World Maker Faire

World Maker Faire was host to some incredible projects. Among the favorites was Nixie Rex [YouTube Link]. Nixie Rex is actually a Panaplex display, since it’s glow comes from 7 planer segments rather than 10 stacked wire digits. One thing that can’t be contested is the fact that Rex is BIG. Each digit is nearly 18 inches tall!

Nixie Rex was created by [Wayne Strattman]. Through his company Strattman Design, [Wayne] supplies lighting effects such as plasma globes and lightning tubes to the museums and corporations. Nixie Rex’s high voltage drive electronics were created by [Walker Chan], a PHD student at MIT. Believe it tor not the entire clock runs on an ATmega328P based Arduino. The digits are daisy chained from the arduino using common Ethernet cables and RJ45 connectors. A Sparkfun DS1307 based real-time clock module ensures the Arduino keeps accurate time.

[Wayne] and Rex were located in “The Dark Room” at Maker Faire, home to many LED and low light projects. The dim lighting certainly helped with the aesthetics, but it did make getting good photos of the clock difficult. Long time Hackaday tipster [Parker] graciously provided us with a size reference up above.

Click past the break to see a closeup of that awesome cathode glow, and a video of the Nixie Rex  in action.

Continue reading “World’s Largest “Nixie” Clock At World Maker Faire”

Flite Test At NYC Maker Faire

NYC Maker Faire may be a no fly zone this year, but that didn’t dampen the spirits of the Flite Test Crew. We met with Flite Test outside their tent in the R/C and drone area of Maker Faire. [Josh Bixler and Alex Zvada] are two of the hosts of the popular YouTube channel. [Josh] is also well-known for his R/C plane designs, such as the Bloody Wonder and Simple Storch. In addition to hosting, [Alex] is the graphic designer Flite Test. He is also an ace quadcopter pilot, and can be found flying his 250 sized chase quad in many episodes.

Most of Flite Test’s designs utilize Readi-Board, available at Dollar-Tree stores around the USA and Canada. The Flite Test crew is working directly with the manufacturer of this foam to make it, and their designs available all over the world.

The team also takes up incredible challenges such as a flying toaster which actually works, making toast as it files. Their flying cinder block is not to be missed either. Their biggest challenge to date was the Google Project Wing + Amazon Prime Air mashup. The video featured a drone that delivered a drone that delivered a drone that delivered a drone that delivered a stick of gum. Matryoshka dolls have nothing on these guys!

Thumbnail that say The Hacklet

Hacklet 16 – Terrific Telepresence Technology

16

This weeks Hacklet is all about being there when you can’t through the magic of telepresence. More than just teleconferencing, telepresence takes things a step further to put the user in a remote space. That might be a robot platform, VR goggles, or a actuators to interact with the remote environment. It’s also a field filled with opportunities for creative hackers!

sidWe start with [PJK’s] Subterranean investigation device. [PJK] is exploring a castle for a hidden basement. To get there he has to traverse a tiny passageway with a rubble floor. Nicknamed “Sid The Weedy”, [PJK’s] bot is radio controlled and uses a webcam to send images back to [PJK]. Much like the robots used to explore pyramids, [PJK] has gone with a track drive system. Unlike the pyramid bots, [PJK] is on a budget, so his track system is a modified chain with block treads. [PJK] doesn’t want to get too attached to his robot – he may well lose Sid on his maiden voyage.

skypeRobotNext up is [JackRC] with his Skype robot. [Jack] is building a relatively low-cost (approx $200 USD) robot using the Skype API. Both his Mark I and Mark II models are based on R/C tanks. Tanks can carry a surprising amount of weight when you remove the turret and cannon. [Jack] added a mounting arm for a tablet and a robot arm for disarming bombs and/or angry children. His craftsmanship skills really show through in the completed ‘bot. Without a size reference, it could pass for a police issue bomb disposal robot!

rift[Gary Firestone] takes us to the skies with his Minimal Latency Oculus Rift FPV. [Gary] is using an Oculus Rift Head Mounted Display (HMD) for First Person View (FPV) piloting. His aircraft is a quadcopter.  [Gary’s] video source is a GoPro camera. His quadcopter transmits the video on 5.8GHz using a standard analog video system. On the receiving end, a laptop captures the video, removes the fish eye warp from the GoPro lens, the re-warps the image for the Oculus. His latency is down around 50 – 100ms, which is pretty good for a system capturing analog video.

rover-americaNext [Brad] rolls cross-country with Chipbot: 4G Telepresence Rover Across America. [Brad] and his 5-year-old stepson are converting an R/C truck into a telepresence rover. Chipbot’s electronics have been given a major upgrade. [Brad] added a Raspberry Pi and an Arduino with an SN75441 chip for motor control. Connectivity is via WiFi using a TP-LINK router, or cellular using a 4G modem. Rather than a Raspberry Pi camera, [Brad] chose to go with a Ubiquiti IP camera. The Ubiquiti uses power over ethernet, so he’s added a POE injector. Chipbot is still in development, but as [Brad’s] last update shows, Chipbot is already responding to commands from the interwebs. It’s been about a month since the last Chipbot update, so if you see [Brad] tell him to stop by Hackaday.io and let us how things are progressing!

android-teleFinally, we have [Joe Ferner] with his generically named Telepresence Robot. [Joe] is controlling his android telepresence avatar with Google’s Android Operating System. His on-board computer is a Nexus 7 tablet. A custom board with an STM32 ARM microcontroller allows the Nexus to interface to the robot’s motors and sensors. [Joe] is using a web interface to control his robot. The early demos are promising, as the telepresence bot has already been taken for a drive in Reston, VA by a user in Milwaukee, WI.

That’s a wrap for this episode of The Hacklet.  As always, see you next week. Same hack time, same hack channel, bringing you the best of Hackaday.io!

Update – Check out our telepresence list right here!

Rotor DR1 And Collaborative Development

In a post apocalyptic world ravaged by the effects of a virus, a young man searches for his father. He forms a friendship with a young woman and a delivery drone that seems oddly sentient. Together they have to fight through abandoned buildings, and past gangs of thugs, to find…

That’s the hook for Rotor DR1, a web series currently in production. Rotor DR1 isn’t a big budget movie, but an independent series created by [Chad Kapper]. [Chad] isn’t new to film or drones, his previous project was Flite Test, which has become one of the top YouTube channels for drones and radio controlled aircraft in general. With the recent sale of Flite Test to Lauren International, [Chad] has found himself with the time to move forward on a project he’s been talking about for years.

Click past the break for more information, and to check out the Rotor DR1 trailer.

Continue reading “Rotor DR1 And Collaborative Development”

Tesla Model S Battery Teardown

Tesla Motors club user [wk057], a Tesla model S owner himself, wants to build an awesome solar storage system. He’s purchased a battery pack from a salvaged Tesla Model S, and is tearing it down. Thankfully he’s posting pictures for everyone to follow along at home. The closest thing we’ve seen to this was [Charles] tearing into a Ford Fusion battery. While the Ford battery is NiMH, the Tesla is a completely different animal. Comprised of over 7000 individual lithium-ion cells in 16 modules, the Tesla battery pack packs a punch. It’s rated capacity is 85kWh at 400VDC.

[wk057] found each cell connected by a thin wire to the module buses. These wires act as cell level fuses, contributing to the overall safety of the pack. He also found the water cooling loops were still charged with coolant, under a bit of pressure. [wk057] scanned and uploaded high res images of the Tesla battery management system PCBs (large image link). It is a bit difficult to read the individual part numbers due the conformal coating on the boards.

A second forum link shows images of [wk057] pulling the modules out of the pack. To do this he had to chip away the pack’s spine, which consisted of a 2/0 gauge wire potted in some sort of RTV rubber compound.

We’re sure Tesla doesn’t support hackers using their packs to power houses. Ironically this is exactly the sort of thing Elon Musk is working on over at Solar City.

Hacklet 15 – Arcade Fire

This week’s Hacklet is dedicated to arcade games. The arcade parlors of the 80’s and early 90’s may have given way to today’s consoles and PC games, but the classic stand-up arcade cabinet lives on! Plenty of hackers have restored old arcade cabinets, or even built their own. We’re going to take a look at some of the best arcade game-related hacks on Hackaday.io!

blackvortex[Brayden] starts things off with his Raspberry Pi Vintage Arcade. The Black Vortex is a tabletop arcade cabinet using a Raspberry Pi, an old monitor, and some nice carpentry skills. Black Vortex uses a Raspberry Pi B+. The extra GPIO pins make interfacing buttons and joystick switches easy. On the software side, [Brayden] is using the popular PiMame (now PiPlay) flavor of Linux built for gaming and emulation. Black Vortex’s shell is plywood. [Brayden] used a pocket hole jig to build a sturdy, cabinet without extra support blocks. A stain finish really works on this one!

custom-crtNext up, [fredkono] blows our minds with the Arcade XY Monitor From Scratch. [fredkono] repairs classic Atari vector game PCBs. He needed a test monitor for his lab. The original Amplifone and WG6100 color XY monitors used in games like Tempest and Star Wars are becoming rather rare. Not a problem, as [fredkono] is building his own. Much like the WG6100, [fredkono] started with a standard color TV CRT. He removed and rewound the yoke for vector operation. The TV’s electronics were replaced with [fredkono’s] own deflection amplifier PCBs.  [fredkono] was sure to include the all- important spot killer circuit, which shuts down the electron guns before a spot can burn-in the CRT.

controlpanel[Rhys] keeps things rolling with a pair of projects dedicated to arcade controls. His TI Launchpad Arcade Control to USB Interface contains instructions and code to use a Texas Instruments Tiva C launchpad as a USB interface for arcade controls. [Rhys] puts all that to good use in his Arcade Control Panel. The control panel features MAME buttons, as well as the standard 2 player fighting game button layout. He finished off his panel with some slick graphics featuring red and blue dragons.

trongame[Sarah and Raymond] hosted a Tron:Legacy release party back in 2010. An epic arcade movie calls for an epic arcade game, or in this case, games. 16 table top arcades to be exact. All 16 machines were built in just 6 days. 8 of the machines ran Armegatron Advanced, a networked version of the classic Tron lightcycle game. The others ran a mix of classic games like PacMan or modern bullet hell shooters like Tou-Hou. The cabinets were built from expanded PVC with wood blocks as a support structure. [Sarah and Raymond] custom painted each cabinet with UV black light paint. We love the custom artwork on their personal signature machines!

mikesArcade[Mike] takes us back to the 80’s with Just Another Arcade Machine. Under the hood, this machine uses the standard Raspberry Pi and PiMame (now PiPlay) suite. [Mike] even added a trackball so he could play Centipede. What makes this arcade special is the cabinet. [Mike] found an old wardrobe with that perfect 80’s style metallic strip cladding. [Mike] removed the cladding, and cut up the chipboard frame. He re-assembled things into a stand-up arcade cabinet that looks like it came right out of Sears’ Electronics department in 1985.

Ok folks, that’s it for another episode of The Hacklet. As always, see you next week. Same hack time, same hack channel, bringing you the best of Hackaday.io!

Global Radiation Monitoring Network Update

Things have been busy at Global Radiation Monitoring Network Central Command. As a semifinalist in the Hackaday Prize, project creator [Radu Motisan] has quite a bit of work to do. He’s not slacking off either. With 33 project logs (and counting), [Radu] has been keeping us up to date with his monitoring network and progress on uRADMonitor , the actual monitoring hardware.

[Radu’s] latest news is that he’s ready to go into production with model A of the uRADMonitor. Moving from project to production can be an incredible amount of work due to sourcing parts, setting up assembly houses, and dealing with any snags that come up along the way. We’re sure [Radu] can handle it, though.

The network of uRADMonitors is also growing. A new monitor was just installed in Prescott, Arizona. This is the 10th unit in the USA.  You can view the map, data, and graphs of global radiation live on the uRADMonitor website.


SpaceWrencherThe project featured in this post is a semifinalist in The Hackaday Prize.