Hackaday 10th Anniversary: Wrap-up

A little more than a month ago we saw the 10 year anniversary of the first Hackaday post ever, and last week we had a little get together in Pasadena to celebrate the occasion. Everyone had a great time, building tiny line-following robots and LiPo chargers, listening to some great talks, and in the evening we all had a lot of fun emptying some kegs. We couldn’t ask for a better crowd, and we thank everyone who came (and those of you who watched everything on the livestream) for participating.

As far as specific people go, we need to thank [charliex], [arko] and everyone else from Null Space Labs for helping out with the weird rotary encoder two-player version of Duck Hunt. The folks from Crashspace were also there, helping out and lending a steady hand and hot soldering iron during the workshops. Shoutouts also go to [datagram] and [jon king] for running the lockpicking workshop, and [Todd Black] deserves a mention for his lithium battery charger workshop. All the speakers deserve to be mentioned again, and you can check out a playlist of their talks below:

Continue reading “Hackaday 10th Anniversary: Wrap-up”

10th Anniversary Trinket Pro Now in the Hackaday Store

Black solder mask and proudly sporting the Jolly Wrencher? The 10th Anniversary Trinket Pro boards just hit the Hackaday Store.

These were actually the suggestion of [Phil Torrone]. He founded Hackaday way back in 2004 and is now CEO of Adafruit Industries. Shortly after I asked him to record a remembrance of his time at Hackaday for the anniversary party he suggested these boards (normally blue and missing our logo) as a limited-edition for the event. It took just two weeks for them to crank out 585 of them.

I’m most likely biased for many reasons. Obviously I like putting the skull and wrenches on everything, and black solder mask is just cool. I also adore the ATmega328 (my 8-bit go-to chip for prototyping) and am especially fond of this form factor as it makes for super simple on-the-go firmware coding.

Once we sell 560 of them they will never return. We’re betting that Adafruit will have an even better minuscule breakout board for our 25th Anniversary. Do you think quantum computing will have trickled down to the single-chip prototyping stage by then?

Update: We’ve updated shipping rates on the store. Orders over $25 in the USA now have free shipping. International shipping is free for orders over $50. We will continue to try and reduce shipping rates as much as possible. We’re new to this so stay tuned!

Hackaday 10th Anniversary: Jon McPhalen and the Propeller

[Jon] came out to our 10th anniversary mini-con to talk about the Propeller, and judging from his short introduction, his hacker cred is through the roof. He has a page on IMDb, and his first computer was a COSMAC. Around 1993, he heard of a small company introducing the BASIC Stamp, and like us with most new technology was incredulous this device could perform as advertised. He tried it, though, and for a few years after that, he was programming the BASIC Stamp every single day.

Having a lot of blinky light project under his belt, [Jon] was always struggling with interrupts, figuring out a way to blink an LED exactly when he wanted it to blink. A lot has changed over at Parallax since 1993, and now they’re spending time with the Propeller, an 8-core microcontroller where interrupts are a thing of the past. He showed off a huge, 10-foot tall bear from League of Legends, all controlled with a single Propeller, using 1000 LEDs to look like fire and flames.

[Jon] shared the architecture of the Propeller, and the inside of this tiny plastic-encapsulated piece of silicon is wild; it’s eight 32-bit microcontrollers, all sharing some ROM and RAM, controlled by something called a Cog that gives each micro access to the address, data, and IO pins.

When the Propeller was first released, there were a few questions of how the chip would be programmed. C isn’t great for multicore work, so Parallax came up with a language called Spin. It’s written for multicore microcontrollers, and from [Jon]’s little session in demo hell, it’s not that much harder to pick up than Python. Remember that hour or two where you learned the syntax of Python? Yeah, learning Spin isn’t a huge time investment.

Even though you can program the Propeller in C and C++, there’s a reason for Spin being the official language of the Propeller. It isn’t even that hard, and if you want to dip your toes in multicore microcontroller programming, the Propeller is the way to do it. It’s an open source chip as well so you can give it a try with an FPGA board.

Hackaday 10th Anniversary: Demoscenes and Blink(1)

There were two LA hackerspaces represented at our 10th anniversary party, and members from both of them were able to give a talk on the projects coming out of their labs. [Arko] from null space labs showed up with a few of his creations including CUBEX, his high altitude balloon payload and a demoscene board he’s been working on. [Tod] from Crashspace showed up with the rest of the Crash crew and helped out with the morning build-offs and labs.

A Demoscene Board

Demoscenes, for one reason or another, aren’t extremely popular in the US. In Europe, you can find teams working on programatically generated music videos year-round, coded for Commodore 64s, Amigas, even stranger computers, and x86 assembly. There’s an art to the whole thing, but for those of us on this side of the pond, there aren’t many venues to demonstrate impeccable graphics programming skill.

[Arko] wants to change this. He’s designed a demoscene board around a PIC micro with hardware graphics acceleration, USB OTG, VGA out at 640×480, and an audio out port. It’s meant to be a platform to create demos on, and already [Arko] has ported the famous Craft demo from [lft] to his platform. Edit: the Craft demo was playing on the older ATmega88 version of the board. The PIC board is a little more capable.

Being that there are so few Demo parties in the US, only building a board to play demos would be just a bit shortsighted. [Arko]’s main reason for giving this talk was to tell everyone about the LayerOne Demoparty next year just a few miles from the Hackaday Hackaspace. It coincides with the LayerOne conference, and the board itself will soon be available for sale in the Hackaday store.

Blink(1) and How To Kickstarter

When it comes to electronics and tech Kickstarters, Blink(1) defines what it means to have a minimum viable product. It’s a USB plug, a small microcontroller, and an RGB LED. That’s it. [Tod] wanted to take this simple project and learn how to turn it into a product. [Tod] emphasised the ‘learn’ part of his plan; the alternate title for this talk was, “How to Fail Multiple Times and Still Ship 20,000 Units.”

The Blink(1) started as a standard My First Arduino Sketch, blinking three LEDs, quickly moving over to a USB LED device. This rather large USB dongle sat there for a few years until he decided to turn this into a product. It turned out building a product is a lot more involved than building a kit, with considerations to the enclosure, the packaging, and the inevitable CNC mold fails. Assembly – and the success of his first Kickstarter – was also an issue. [Tod]’s friends ended up assembling most of the kits.

Despite these problems, [Tod] was still able to ship a few thousand units and is now working on another production run with SeeedStudio. It’s a remarkable story, with the Blink(1) used by Google, Disney, Microsoft, Facebook, and a whole bunch of other huge companies. The Blink(1) is also in the mainline Linux kernel, something you can’t say about a lot of Kickstarters out there.

Hackaday 10th Anniversary: Non-Binary Computing

When [Thundersqueak] was looking for a project for The Hackaday Prize, she knew it needed to be a special project. IoT devices and microcontrollers are one thing, but it’s not really something that will set you of from the pack. No, her project needed to be exceptional, and she turned to logic and balanced ternary computing.

[Thundersqueak] was inspired to design her ternary computer from a few very interesting and nearly unknown historical computing devices. The first was the [Thomas Fowler] machine, designed all the way back in 1838. It could count to several thousand using a balanced ternary mechanical mechanism. The [Fowler] machine was used to calculate logs, and the usual boring mathematical tasks of the time.

A bit more research turned up the Setun, an electronic computer constructed out of vacuum tubes in 1958. This computer could count up to 387,000,000 with eighteen ternary digits. On the binary machine you’re using right now, representing that would take twenty-nine binary digits. It’s about a 2.5 times more efficient way of constructing a computer, and when you’re looking for the right vacuum tubes in 1950s USSR, that’s a great idea.

[Thundersqueak] isn’t dealing with vacuum tubes – she has a world of semiconductors at her fingertips. After constructing a few truth tables for ternary logic, she began designing circuits to satisfy the requirements of what this computer should do. The design uses split rails – a negative voltage, a positive voltage, and ground, with the first prototype power supply made from a 741 Op-amp. From there, it was just breadboarding stuff and checking her gates, transistors, and truth tables to begin creating her ternary computer.

With the basic building blocks of a ternary computer done, [Thundersqueak] then started to design a basic ALU. Starting with a half adder, the design then expanded to a full adder with ripple carry. We’re sure there are plans for multiplying, rotating, and everything else that would turn this project into a CPU.

Hackaday 10th Anniversary: [1o57] and the Art of Encryption

[Ryan] a.k.a. [1o57] comes from an age before anyone could ask a question, pull out their smartphone, and instantly receive an answer from the great Google mind. He thinks there’s something we have lost with our new portable cybernetic brains – the opportunity to ask a question, think about it, review what we already know, and reason out a solution. There’s a lot to be said about solving a problem all by yourself, and there’s nothing to compare to the ‘ah-ha’ moment that comes with it.

[1o57] started his Mystery Challenges at DEFCON purely by accident; he had won the TCP/IP embedded device competition one year, and the next year was looking to claim his title again. The head of the TCP/IP embedded competition had resigned from his role, and through a few emails, [1o57] took on the role himself. There was a miscommunication, though, and [1o57] was scheduled to run the TCP/IP drinking competition. This eventually morphed into a not-totally-official ‘Mystery Challenge’ that caught fire in email threads and IRC channels. Everyone wanted to beat the mystery challenge, and it was up to [1o57] to pull something out of his bag of tricks.

The first Mystery Challenge was a mechanical device with three locks ready to be picked (one was already unlocked), magnets to grab ferrous picks, and only slightly bomb-like in appearance. The next few years featured similar devices with more locks, better puzzles, and were heavy enough to make a few security officials believe [1o57] was going to blow up the Hoover dam.

With a few years of practice, [1o57] is turning crypto puzzles into an art. His DEFCON 22 badge had different lanyards that needed to be arranged to spell out a code. To solve the puzzle, you’ll need to talk to other people, a great way to meet one of [1o57]’s goals of getting all the natural introverts working together.

Oh. This talk has its own crypto challenge, something [1o57] just can’t get out of his blood:

We talked for a little bit, and 0x06 0x0a1 MFY YWXDWE MEOYOIB ASAE WBXLU BC S BLOQ ZTAO KUBDR HG SK YTTZSLBIMHB

Hackaday 10th Anniversary: Quinn Dunki and Veronica

In case you haven’t been reading Hackaday for the last few weeks, we just had an amazing 10th anniversary party in Pasadena this weekend, full of workshops, talks, and a party that reportedly went until four in the morning. One of the amazing hackers we invited to give a talk was [Quinn Dunki], creator of Veronica, the modern 6502 computer stuffed inside an old radio.

We first saw Veronica a few years ago, but [Quinn] figures she’s been building her computer for about five years now. She’s a software developer by trade that decided one day to dip her toes into the murky seas of hardware development and build a computer from the ground up. She chose the 6502 as the brains of her contraption, laid out everything on single-sided boards etched in a kitchen, and connected everything with a backplane. Right now it has a USB keyboard, (technically a PS/2 keyboard with a USB plug), NES controllers, a VGA display, and a monitor and Pong in ROM. [Quinn]’s goal was to build a computer that could program itself, and after five years, she’s accomplished that goal.

[Quinn] admits her software background was responsible for a few of her admittedly bad design choices; the VGA is generated by an ATMega microcontroller, working under the theory that if she could clock the micro fast enough, she could do VGA. She now believes an FPGA would have been a better choice for video output, but now that the video circuit is done, she probably won’t revisit that problem.

There is one thing missing from Veronica, and something that [Quinn] will be working on in the future: mass storage. Right now every program Veronica can run is either stored in ROM or entered via the keyboard. A hard drive is the next problem to solve, either with an SD card, or a Compact Flash or IDE hard drive.