Hackaday Links Column Banner

Hackaday Links: July 19, 2015

Everybody needs an external USB drive at some time or another. If you’re looking for something with the nerd cred you so desperately need, build a 5 1/4″ half height external drive. That’s a mod to an old Quantum Bigfoot drive, and also serves as a pretty good teardown video for this piece of old tech.

The Woxun KG-UV2D and KG-UV3D are pretty good radios, but a lot of amateur radio operators have found these little handheld radios eventually wear out. The faulty part is always a 24C64 Flash chip, and [Shane] is here to show you the repair.

Last year there was a hackathon to build a breast pump that doesn’t suck in both the literal and figurative sense. The winner of the hackathon created a compression-based pump that is completely different from the traditional suction-based mechanism. Now they’re ready for clinical trials, and that means money. A lot of money. For that, they’re turning to Kickstarter.

What you really need is head mounted controls for Battlefield 4. According to [outgoingbot] it’s a hacked Dualshock 4 controller taped to a bike helmet. The helmet-mounted controller has a few leads going to another Dualshock 4 controller with analog sticks. This video starts off by showing the setup.

[Jan] built a modeling MIDI synth around a tiny 8-pin ARM microcontroller.  Despite the low part count, it sounds pretty good. Now he’s turned his attention to the Arduino. This is a much harder programming problem, but it’s still possible to build a good synth with no DAC or PWM.

A Beautifully Crafted N64 Portable

With dozens of powerful single board Linux computers available, you would think the time-tested practice of turning vintage video game consoles would be a lost art. Emulators are available for everything, and these tiny Linux boxes are smaller than the original circuitry found in these old consoles. [Chris], one of the best console modders out there, is still pumping out projects. His latest is a portable N64, and it’s exactly what we’ve come to expect from one of the trade’s masters.

We’ve seen dozens of Nintendo 64s modded into battery-powered handhelds over the years, and [Chris]’ latest project follows the familiar format: remove the PCB from the console, add a screen, some buttons, and a battery, and wrap everything up in a nice case. It’s the last part of the build – the case – that is interesting here. The case was fabricated using a combination of 3D printing CNC machining.

rogueThe enclosure for this project was initially printed in PLA, the parts glued together and finally filled for a nice, smooth finish. [Chris] says PLA was a bad choice – the low melting point means the heat from milling the face plate gums up the piece. In the future, he’ll still be using printed parts for enclosures, but for precision work he’ll move over to milling polystyrene sheets.

With the case completed, a few heat sinks were added to the biggest chips on the board, new button breakout board milled, and a custom audio amp laid out. The result is a beautifully crafted portable N64 that is far classier and more substantial than any emulator could ever pull off.

[Chris] put together a video walkthrough of his build. You can check that out below.

Continue reading “A Beautifully Crafted N64 Portable”

Hackaday Prize Entry: A Portable Environmental Monitor

There are a lot of environmental monitors in the running for this year’s Hackaday Prize. Whether they’re soil moisture sensors for gardens or ultraviolet sensors for the beach, the entrants for The Hackaday Prize seem to grasp the inevitable truth that you need information about the environment before doing anything about the environment.

But what about sharing that information? Wouldn’t it be handy if there were an online repository where you could look up environmental conditions of any location on the planet? That’s where [radu.motisan]’s Portable Environmental Monitor comes in. It’s a small, pocketable device that measures just about everything and uploads that data to the Internet.

This project is a continuation of [radu]’s entry for The Hackaday Prize last year, the Global Radiation Monitoring Network. This was more than just a Geiger tube connected to the Internet; [radu] has a global network of Geiger counters displaying counts per minute on a nifty live map.

[radu]’s latest project expands on the capabilities of the Global Radiation Monitoring Network with more sensors and portability. Inside the Environmental Monitor are enough sensors to look at Alpha, Beta and Gamma radiation, dust and toxic gas, and other types of pollution. With the addition of an ESP8266 WiFi module, this portable device can upload sensor readings to the Internet, greatly expanding [radu]’s uRADMonitor network.

The 2015 Hackaday Prize is sponsored by:

Tracking Nearly Every Aircraft With A Raspberry Pi

FlightAware is the premier site for live, real-time tracking of aircraft around the world, and for the last year or so, Raspberry Pi owners have been contributing to the FlightAware network by detecting aircraft flying overhead and sending that data to the FlightAware servers.

Until now, these volunteers have used Raspis and software defined radio modules to listen in on ADS-B messages transmitted from aircraft. With FlightAware’s new update to PiAware, their Raspberry Pi flight tracking software, Mode S transponders can also be detected and added to the FlightAware network.

Last year, FlightAware announced anyone with a Raspberry Pi, a software defined radio module, and an Internet connection would earn a free FlightAware enterprise account for listening to ADS-B transmitters flying overhead and sending that information to the FlightAware servers. ADS-B is a relatively new requirement for aviators that transmits the plane’s identification, GPS coordinates, altitude, and speed to controllers and anyone else who would like to know who’s flying overhead.

Mode S transponders, on the other hand, are older technology that simply transmits the call sign of an aircraft. There’s no GPS information or altitude information transmitted, but through some clever multilateration in the new PiAware release these transponders and planes can now be tracked.

To get the location of these transponders, at least three other PiAware boxes must receive a signal from a Mode S transponder. These signals, along with a timestamp of when they were received are then sent to the FlightAware servers where the location of a transponder can be determined.

The end result of this update is that FlightAware can now track twice as many aircraft around the world, all with a simple software update. It’s one of the most successful applications of crowdsourced software defined radio modules, and if you’d like to get in on the action, the FlightAware team put together a bulk order of ADS-B antennas.

Hackaday Prize Entry: New Firmware For A Smartwatch

Smartwatches are the next big thing. Nobody knows what we’re going to use them for, but that’s never stopped a product from being the hottest item around. The WeLoop Tommy isn’t the Apple Watch, it isn’t the Moto360, and it isn’t the Microsoft Band. It is, however, a nice smartwatch with a Sharp memory display and a battery that lasts longer than a few days. For his Hackaday Prize entry, [Krzysiek] is making an open source firmware for the WeLoop Tommy that will add capabilities no other smartwatch has.

This project is a complete reverse engineering of the WeLoop Tommy smartwatch. [Krzysiek] is tearing everything down to the bare components and figuring out how the RAM, Flash, buttons, LCD, and accelerometer connect to the processor. After that, it’s time for custom firmware.

Already [Krzysiek] has a test app that displays [OSSW] on the Sharp memory display. It’s not much, but the hardware is solid. With the right firmware, the WeLoop Tommy will be able to do just about everything an Android, Apple, or Microsoft smartwatche can do using repurposed hardware and open source firmware.

The 2015 Hackaday Prize is sponsored by:

ProxyGambit Better Than ProxyHam; Takes Coffee Shop WiFi Global

Last weekend saw the announcement of ProxyHam, a device that anonymizes Internet activity by jumping on WiFi from public libraries and cafes over a 900MHz radio link. The project mysteriously disappeared and was stricken from the DEFCON schedule. No one knows why, but we spent some time speculating on that and on what hardware was actually used in the undisclosed build.

[Samy Kamkar] has just improved on the ProxyHam concept with ProxyGambit, a device that decouples your location from your IP address. But [Samy]’s build isn’t limited to ProxyHam’s claimed two-mile range. ProxyGambit can work anywhere on the planet over a 2G connection, or up to 10km (6 miles) away through a line-of-sight point to point wireless link.

The more GSM version of ProxyGambit uses two Adafruit FONA GSM breakout boards, two Arduinos, and two Raspberry Pis. The FONA board produces an outbound TCP connection over 2G. The Arduino serves as a serial connection over a reverse TCP tunnel and connects directly to the UART of a Raspberry Pi. The Pi is simply a network bridge at either end of the connection. By reverse tunneling a TCP connection through the ‘throwaway’ part of the build, [Samy] can get an Internet connection anywhere that has 2G service.

Although it’s just a proof of concept and should not be used by anyone who actually needs anonymity, the ProxyGambit does have a few advantages over the ProxyHam. It’s usable just about everywhere on the planet, and not just within two miles of the public WiFi access point. The source for ProxyGambit is also available, something that will never be said of the ProxyHam.

Hackaday Prize Entry: A Better Bench Power Supply

Back in February, [The Big One] started building the bench power supply to rule them all. His previous power supply was just an ATX computer power supply. It worked, but that didn’t give him fancy stuff like different channels of individually adjustable voltages. Since then, we’ve spun up the 2015 Hackaday Prize, and [The Big One] has changed his DIY power supply into a Hackaday Prize entry that competes well against $1000 mid-range commercial units.

The single most expensive component in this power supply are a pair of isolated switched power supplies rated for 15V and 7A. This is a change from [The Big One]’s original plan to use a big ‘ol transformer; a switched mode supply is smaller, lighter, costs about the same, and is much better suited to the modular nature of the project.

The final design for this power supply has some interesting features: up to six channels are possible, voltage and current can go all the way down to zero, and everything can be controlled over USB. Those are amazing features that won’t be found in any $100 cheapo bench power supply, and [The Big One]’s amazing documentation for this project makes it a perfect entry for The Hackaday Prize.

The 2015 Hackaday Prize is sponsored by: