Keeping The Family Off The Net With An Undocumented Backdoor

memetics

When [Eloi] was home for Christmas, he faced one of the most difficult problems man has ever faced: his entire family, equipped with smartphones and laptops, siphoning all the Internet through a 1Mb/s connection. For any technically minded person, the fix for this problem is to limit the bandwith for all those Facebook and Twitter-heads, while leaving [Eloi]’s battlestation unaffected. [Eloi] had originally set up the Linksys WAG200G router in the family home a few years ago but had since forgotten the overly complex admin password. No worries, then, because apparently the WAG200G is open as wide as a barn door with a completely undocumented backdoor.

Without the password to the admin panel of the router, [Eloi] needed a way in. After pointing nmap at the router, he found an undocumented service running on port 32764. Googling this observation resulted in a lot of speculation, so the only option was to download the router’s firmware, look for the service, and figure out a way in.

[Eloi] eventually got a shell on the router and wrote a very short Python script to automate the process for all WAG200G routers. As for where this backdoor came from, it appears a SerComm device on the router is responsible. This means a whole bunch of routers with this specific SerComm module also have this backdoor, and we’d assume anything with a service running on port 32764 is suspect.

If you’re looking for a fix for this backdoor, your best bet is probably installing OpenWRT or Tomato. The OpenWAG200 project, an open firmware specifically designed for [Eloi]’s router, still has this vulnerability, though.

The Most Beautiful Floppy Disk Jukebox Ever

Playing music on floppy drives is something that has been done to death. [kiu]’s RumbleRail is something else entirely. Yes, it’s still a collection of floppy drives playing MIDI files, but the engineering and build quality that went into this build puts it in a class by itself.

Instead of the usual assemblage of wires, power cords, and circuits that accompany most musical floppy drive builds, [kiu]’s is an exercise in precision and modularity. Each of the eight floppy drives are connected to its own driver with an ATMega16 microcontroller on board. The microcontrollers in these driver boards receive orders from the command board over an I2C bus. Since everything on the RumbleRail is modular, and the fact [kiu] is using DIP switches to set the I2C address of each board, this build could theoretically be expanded to 127 voices, or 127 individual floppy drives each playing their part of a MIDI file.

The RumbleRail can also operate in a standalone mode without the need for a separate computer feeding it data. MIDI files can be loaded off an SD card by the main controller board, and decode them for the floppy drivers.

If you’d like to build your own RumbleRail, all the board files, schematics, and firmware are up on [kiu]’s git. There are, of course, a few videos below of the floppy jukebox in action.

Continue reading “The Most Beautiful Floppy Disk Jukebox Ever”

Hackaday Links: January 5, 2014

hackaday-links-chain

While we can’t condone the actual use of this device, [Husam]’s portable WiFi jammer is actually pretty cool. It uses a Raspberry Pi and an Aircrack-ng compatible dongle to spam the airwaves with deauth packets. The entire device is packaged in a neat box with an Arduino-controlled LCD and RGB LEDs. Check out an imgur gallery here.

You can pick up a wireless phone charger real cheap from any of the usual internet outlets, but try finding one that’s also a phone stand. [Malcolm] created his own. He used a Qi charger from DealExtreme and attached it to a 3D printed phone stand.

A while back, [John] noticed an old tube radio in an antique store. No, he didn’t replace the guts with a Raspberry Pi and an SD card full of MP3s. He just brought it back to working condition. After fixing the wiring (no ground cord on these old things), repairing the speaker cone, putting some new twine on the tuner and replacing the caps, [John] has himself a new old radio. Here’s a video of the complete refurbishment.

Here’s a Sega Master System (pretty much a Game Gear) running on an STM32 dev board. Also included are some ROMs for some classic games – Sonic the Hedgehog, Castle of Illusion, and The Lion King. If you have this STM Discovery board you can grab the emulator right here.

[Spencer] wanted a longer battery life in his iPhone, so he did what any engineering student would do: he put another battery in parallel.

Breadboarding something with an AVR or MAX232? Print out some of these stickers and make sure you get the pinouts right. Thanks, [Marius].

Image Sensor For Filling Wine Bottles

wine

A wine bottling company in New Zealand got in touch with [Boz] to solve a problem. They needed a way to automatically determine if a wine bottle was filled or not. What he came up with is a very simple yet very effective fill level sensor that can scan thousands of bottles an hour.

There were a few design decisions that went into the construction of this wine bottle sensor. [Boz] could have used a VGA camera sensor, but given the speed of the bottling line (half a meter per second), pushing all those pixels to a computer and doing real-time image analysis would be difficult. [Boz] settled on a much simpler solution – a 1×128 linear CCD analog image sensor. With a PIC microcontroller, this allows the device to check multiple bottles per second, calculate if the bottle is full or not (or overfilled), and send a ‘pass’ or ‘reject’ signal to the rest of the line.

The rest of the assembly is fairly straightforward with an LED backlight providing the illumination for the CCD and a Bluetooth transmitter for checking out the machine’s settings. On the bottling line, the device has 99% accuracy for both red wines in dark bottles and whites in green bottles. You can take a gander of this device in action on a New Zealand bottling line below.

Continue reading “Image Sensor For Filling Wine Bottles”

Testing The Limits Of Home PCB Etching

[Quinn Dunki]’s Veronica, a homebrew computer based on the 6502 CPU, is coming along quite nicely. She’s just finished the input board that gives Veronica inputs for a keyboard and two old Nintendo gamepads. [Quinn] is building this computer all by her lonesome, including etching all the PCBs. She’s gotten very, very good at etching her own boards, but this input board did inspire a few facepalming moments.

In an earlier post, [Quinn] went over her PCB etching capabilities. As demonstrated by the pic above, she’s able to print 16 mil traces with 5 mil separation. This is just about as good as you can get with homebrew PCBs, but it’s not without its problems.

[Quinn] is using a photographic process for her boards where two copies of a mask is printed on an acetate sheet, doubled up, and laid down on a pre-sensitized copper board. The requirement for two layers of toner was found by experience – with only one layer of toner blocking UV light, [Quinn] got some terrible pitting on her traces and ground planes.

Two photographic masks means the masks must be precisely aligned. This example shows what happens when the acetate sheets are ever so slightly misaligned. With a 5 mil gap between traces, [Quinn] needs to align the masks to within ±2.5 mils; difficult to do by eye, and very hard once you factor in flexing and clamping them down to the copper board.

Even when this process goes perfectly, [Quinn] is pushing the limits of a laser printer. When printing at 600 dpi, the pixels of the print are about 1.5 mils. While GIMP, printer drivers, and the printer itself have some fancy software to help with the interpolation, [Quinn] is still seeing ‘bumps’ on the edges of perfectly aligned parts. This is one of those things that really makes you step back and realize how amazing fabbing PCBs at home actually is.

With most of the hardware for Veronica out of the way, it’s just about time for [Quinn] to start programming her baby. We’re not expecting a full-blown operating system and compiler, but those NES gamepads are probably crying out for some use.

International Obfuscated C Code Contest Winners Posted

ioccc

The International Obfuscated C Contest – the contest to create the most useful, useless, or unique program in absolutely unreadable C code – has just posted the winners of the 2013 contest.

Of the entries of note, a few really stand out. The pic at the top of this post, for instance, comes courtesy of this submission. It’s an iterative ray tracer stuck inside an infinite loop that, when left running overnight, is able to produce amazing renders.

An IOCCC contest wouldn’t be complete without some ASCII art C code, and this entry fits the bill. It’s a Tetris painting tool that creates images made out of tetronomoes. Each image is built up one line at a time from the bottom up, using Tetris’ lack of physics to create a picture out of un-cleared lines.

One of the most impressive entries for this (last?) year’s contest is a tiny 8086 PC emulator/virtual machine written in only 4043 bytes of code. It’s a fully functional 80s-era PC emulator that can run vintage copies of AutoCAD, Windows, Lotus 1-2-3, and SimCity.

All the submissions are awesome, but like any IOCCC contest, there aren’t actually any winners. Or they’re all winners. The Obfuscated rules aren’t very clear in that regard.

[Fran]’s LEDs, Nixies, And VFDs.

FRAN LED

With a love of blinky and glowey things, [Fran] has collected a lot of electronic display devices over the years. Now she’s doing a few teardowns and tutorials on some of her (and our) favorite parts: LEDs and VFD and Nixie tubes

Perhaps it’s unsurprising that someone with hardware from a Saturn V flight computer also has a whole lot of vintage components, but we’re just surprised at how complete [Fran]’s collection is. She has one of the very first commercial LEDs ever made. It’s a very tiny red LED made by Monsanto (yes, that company) packaged in a very odd lead-and-cup package.

Also in her LED collection is a strange Western Electric part that’s green, but not the green you expect from an LED. This LED is more of an emerald color – not this color, but more like the green you get with a CMYK process. It would be really cool to see one of these put in a package with red, green, and blue LED, and could have some interesting applications considering the color space of an RGB LED.

Apart from her LEDs, [Fran] also has a huge collection of VFD and Nixie tubes. Despite the beliefs of eBay sellers, these two technologies are not the same: VFDs are true vacuum tubes with a phosphorescent coating and work something like a CRT turned inside out. Nixies, on the other hand, are filled with a gas (usually neon) that turns to plasma when current flows through one of the digits. [Fran] has a ton of VFDs and Nixies – mostly military surplus – and sent a few over to [Dave Jones] for him to fool around with.

It’s all very cool stuff and a great lead-in to what we hear [Fran] will be looking at next: electroluminescent displays found in the Apollo Guidance Computer.

Videos below.

Continue reading “[Fran]’s LEDs, Nixies, And VFDs.”