This Is An Inordinate Amount Of Switches

How do you start a good habit? As a blogger, someone who spends a spectacular amount of time on Twitter, and a Thought Leader Life Coach, I can tell you: the best way to start a good habit is by doing it every day. [Arduino Enigma] has just the solution to procrastination, laziness, or whatever else is stopping you from forming a good habit. It’s a good habit tracker, and far too many switches on a single PCB.

The inspiration for this build comes from the master of shitty robots, [Simone Giertz], who built something containing 365 switches and 12 LEDs. The idea is simple: every day, [Simone] would do 10 minutes of yoga and 10 minutes of meditation, then flip a switch. At the end of the month, an LED would light up. Do it every day for a year, and all the lights are on, hopefully beginning a new, good habit.

[Simone]’s version is rather large, and quite possibly used panel-mount switches. Where there’s a will, there’s someone able to make a PCB, so [Arduino Enigma] whipped up a board with 365 switches, 12 resistors, and 12 LEDs.

The circuit for this good habit tracker is extremely simple. It’s simply power going into 30, 31, or 28 switches in series, one after the other. At the end of the month, the LED lights up.

Is it complicated? No, but that’s not exactly the point. We’re hacking behavior here and not electrons, although this is a great example of how PCBs can be simultaneously far too complicated and far too simple.

Turning Tact Switches Into Keyboards

One of the great unsolved problems in the world of DIY electronics is a small keyboard. Building your own QWERTY keyboard is a well-studied and completely solved problem; you need only look at the mechanical keyboard community for evidence of that. For a small keyboard, though, you’d probably be looking at an old Blackberry handset, one of those Bluetooth doohickies, or rolling your own like the fantastic Hackaday Belgrade badge. All of these have shortcomings. You’ll need to find a header for the Blackberry keyboard’s ribbon cable, the standard Bluetooth keyboard requires Bluetooth, and while the Belgrade badge’s keyboard works well, it’s a badge, not a keyboard you would throw in a bag for years of use.

[bobricious] might have just cracked it. For his Hackaday Prize entry, he’s created a tiny USB keyboard out of tact switches. What’s the secret? An entire panel of PCBs. It looks great, and it might just hold up to the rigors of being tossed in a random bag of holding filled with electronics.

The electronics for the keyboard are simple enough; there are 56 standard through-hole tact switches, and an SAMD21 microcontroller. Connections to the outside world are through a micro USB port, serial, or I2C. it’s small, too, coming in at just under 5 cm by 10 cm.

The real trick here is using a stack of PCBs to label the buttons and provide a bit of mechanical support. The panel for this project consists of one base board holding all the electronics and a secondary board that gives the entire project a finished look while adding a bit of structural support.

If you’ve never looked at the options for small keyboards, there aren’t many. Blackberries are a thing of the past, and there’s no good way to add a QWERTY keyboard to small projects. This project does that in spades. Since the basic idea is, ‘put holes in a second PCB’, this idea is transferable to other keyboard layouts too.

Vaporwave For The Parallel Port

FM synthesis is the sound of the 1980s, it’s the sound of shopping malls and Macintosh Plus. It’s the sound of the Motorola DynaTAC, busts of Helios, and the sound of vaporwave サ閲ユ. The chips most responsible for this sound is the OPL2 and OPL3, tiny little FM synthesizers on a chip, produced by Yamaha, and the core of the AdLib and Sound Blaster sound cards. It’s the chip behind the music in all those great DOS games.

Unfortunately, computers don’t have ISA slots anymore, and cards don’t work in 486 and Pentium-based laptops, the latest hotness for retrocomputing enthusiasts. For his Hackaday Prize entry, [serdef] is bringing the sound of the 80s to the parallel port with the OPL2LPT. It’s a sound card for the parallel port that isn’t just a resistor DAC like the Covox Speech Thing.

The design of the OPL2LPT is pretty much what you would expect; it’s an OPL2 chip, opamp, a 1/8″ jack, and a few passive components. The real trick here is in the driver; by default, every DOS game around expects an Adlib card on port 338h, whereas the parallel post is at 378h. A driver takes care of this in software, but it is possible to patch a game to change every write to an Adlib card to a write to a parallel port.

Already, [serdef]’s parallel port graphics card is a real, working product and has caught the attention of Lazy Game Reviews and the 8-Bit-Guy, you can check out those video reviews below.

Continue reading “Vaporwave For The Parallel Port”

Ask Hackaday: What Is The Future Of Implanted Electronics?

Biohacking is the new frontier. In just a few years, millions of people will have implanted RFID chips under the skin between their thumb and index finger. Already, thousands of people in Sweden have chipped themselves to make their daily lives easier. With a tiny electronic implant, Swedish rail passengers can pay their train ticket, and it goes without saying how convenient opening an RFID lock is without having to pull out your wallet.

That said, embedding RFID chips under the skin has been around for decades; my thirteen-year-old cat has had a chip since he was a kitten. Despite being around for a very, very long time, modern-day cyborgs are rare. The fact that only thousands of people are using chips on a train is a newsworthy event. There simply aren’t many people who would find the convenience of opening locks with a wave of a hand worth the effort of getting chipped.

Why hasn’t the most popular example of biohacking caught on? Why aren’t more people getting chipped? Is it because no one wants to be branded with the Mark of the Beast? Are the reasons for a dearth of biohacking more subtle? That’s what we’re here to find out, so we’re asking you: what is the future of implanted electronics?

Continue reading “Ask Hackaday: What Is The Future Of Implanted Electronics?”

32 Shades Of Gray

The ATtiny85 is an incredible piece of engineering. In just eight pins, you get a microcontroller with just enough oomph to do some really heavy lifting. You get an Open Source toolchain, and if you’re really good, you can build your own programmer. It does have its limits though; there isn’t a whole lot of Flash, and of course you’re always going to need a few extra pins.

For his Hackaday Prize entry, [danjovic] is pushing whatever limits are left with the ‘tiny85. He’s using it as a test pattern generator, pushing out pixels to any old TV. The entire circuit is powered by a coin cell, and the entire thing fits in a Tic-Tac box.

The heart of the project, as you would expect, is a resistor ladder using all six available pins, using five for luminance and one for the sync. That is thirty-two shades of gray, if you’re keeping track. The trick is using the internal PLL and a bit of math to calculate the proper resistor values. The result is just a test pattern, yes, but [danjovic] managed to get a test pattern that has a resolution of 850 pixels across. That’s not bad by any measure.

Of course, if grayscale isn’t your thing, you can also use the ‘tiny85 to send Never The Same Color over the air or even push out the jams over a VGA port.

Friday Hack Chat: Hacking The Wild

It’s nearly summer, and that means we’re right at the start of conference season, at least for the tech and netsec crowd. Conferences, if you’re not aware, are a conspiracy for the hotel-industrial complex and a terrible way to spend thousands of dollars on a crappy hotel room and twenty-five dollar hamburgers.

[Andrew Quitmeyer] is working on an experimental academic conference that might just put an end to the horrors of conference season. He’s creating his own conference called Dinacon, and it’s going to be cheaper to attend, even though it’s on a tropical island in the Pacific.

For this week’s Hack Chat, we’re going to be talking with [Andrew] about Dinacon, a free, two-month-long conference with over 140 attendees from every continent except Antarctica. [Andrew]’s research is in ‘digital naturalism’ at the National University of Singapore and blends biological fieldwork with DIY crafting. The focus of this conference will be workshops where participants build technology in the wild meant to interact with nature.

Not only is the intersection of DIY electronics interesting to the Hackaday community, this is also an interesting conference from a logistical standpoint. The conference philosophy spells it out pretty clearly, with the main takeaway being that [Andrew] is self-funding this conference himself. It’s only going to take about $10,000 USD to host this conference (!), and there are even a few travel stipends to go around. This is also a two-month-long conference. I assure you, after dealing with Supercons, Hackaday meetups, and all the other events Hackaday puts on, this is exceptionally interesting. It’s unheard of, even.

For this week’s Hack Chat, we’re going to be discussing:

  • What is digital Naturalism?
  • What does DIY electronics look like in the forest? 
  • What did you learn from Hacking The Wild
  • What kind of things do people make at Dinacon? 
  • What is the biggest bug that ever got into one of your electronics experiments? 

You are, of course, encouraged to add your own questions to the discussion. You can do that by leaving a comment on the Hack Chat Event Page and we’ll put that in the queue for the Hack Chat discussion.join-hack-chat

Our Hack Chats are live community events on the Hackaday.io Hack Chat group messaging. This week is just like any other, and we’ll be gathering ’round our video terminals at noon, Pacific, on Friday, June 8th.  Here’s a clock counting down the time until the Hack Chat starts.

Click that speech bubble to the right, and you’ll be taken directly to the Hack Chat group on Hackaday.io.

You don’t have to wait until Friday; join whenever you want and you can see what the community is talking about.

Hackaday Links Column Banner

Hackaday Links: June 3, 2018

All the Radio Shacks are dead. adioS, or something. But wait, what’s this? There are new Radio Shacks opening. Here’s one in Idaho, and here’s another in Claremore, Oklahoma. This isn’t like the ‘Blockbuster Video in Nome, Alaska’ that clings on by virtue of being so remote; Claremore isn’t that far from Tulsa, and the one in Idaho is in a town with a population of 50,000. Are these corporate stores, or are they the (cool) independent Radio Shacks? Are there component drawers? Anyone want to take a field trip and report?

A few years ago, [cnxsoft] bought a Sonoff WiFi switch to control a well pump. Despite this being a way to control the flow of massive amounts of water with an Internet of Things thing, we’re still rocking it antediluvian style, and for the most part this WiFi-connected relay worked well. Until it didn’t. For the past few days, the switch wouldn’t connect to the network, so [cnxsoft] cracked it open to figure out why. There was one burnt component, and more than one electrocuted insect. Apparently, an ant bridged two pins, was shortly electrocuted, and toasted a resistor. It’s a bug, a real bug, in an Internet of Things thing.

eInk is coming to license plates? Apparently. Since an eInk license plate already includes some electronics, it wouldn’t be much to add some tracking hardware for a surveillance state.

Hold up, it’s a press release about crypto hardware. No, not that crypto, the other crypto. Asus has announced a new motherboard that is capable of supporting twenty graphics cards. This isn’t a six-foot-wide motherboard; it’s designed especially for coin mining, and for that, the graphics cards really only need a PCIe x1 connection. The real trick here is not using PCIe headers, and instead piping everything over vertical-mount USB ports. Yes, this is a slight cabling nightmare. So, you still think the early 80s with fluorinert waterfalls and Blinkenlights that played Game of Life was the pinnacle of style in computer hardware? No, this is it right here.

Here’s a book you should readIgnition!: An Informal History of Liquid Rocket Propellants by John Drury Clark is a fantastic book about how modern liquid rocket fuel came to be. Want to know why 60s cartoons and spy movies always referenced a ‘secret rocket fuel formula’ when kerosene and liquid oxygen work just fine? This is that. Back when we covered it, the book, used, on Amazon, cost $500. It’s now in print again and priced reasonably. It’s on the Inc. 9 Powerful Books Elon Musk Recommends list, so you know it’s good. Thanks, [Ben] for sending this one in on the tip line.