Hackaday Podcast 028: Brain Skepticism Turned Up To 11, Web Browsing In ’69, Verilog For 7400 Logic, 3D Printing In Particle Board

Hackaday Editors Mike Szczys and Elliot Williams cover the most interesting hacks over the past week. So much talk of putting computers in touch with our brains has us skeptical on both tech and timeline. We celebrated the 40th Anniversary of the Walkman, but the headphones are the real star. Plus, Verilog isn’t just for FPGAs, you can synthesize 7400 circuits too! Elliot is enamored of an additive/subtractive printing process that uses particle board, and we discuss a couple of takes on hybrid-powered drones.

Take a look at the links below if you want to follow along, and as always tell us what you think about this episode in the comments!

Direct download (62 MB)

Places to follow Hackaday podcasts:

Continue reading “Hackaday Podcast 028: Brain Skepticism Turned Up To 11, Web Browsing In ’69, Verilog For 7400 Logic, 3D Printing In Particle Board”

Everything We Know About SpaceX’s Starlink Network

When it comes to SpaceX, or perhaps more accurately its somewhat eccentric founder and CEO Elon Musk, it can be difficult to separate fact from fiction. For as many incredible successes SpaceX has had, there’s an equal number of projects or ideas which get quietly delayed or shelved entirely once it becomes clear the technical challenges are greater than anticipated. There’s also Elon’s particular brand of humor to contend with; most people assumed his claim that the first Falcon Heavy payload would be his own personal Tesla Roadster was a joke until he Tweeted the first shots of it being installed inside the rocket’s fairing.

So a few years ago when Elon first mentioned Starlink, SpaceX’s plan for providing worldwide high-speed Internet access via a mega-constellation of as many as 12,000 individual satellites, it’s no surprise that many met the claims with a healthy dose of skepticism. The profitability of Starlink was intrinsically linked to SpaceX’s ability to substantially lower the cost of getting to orbit through reusable launch vehicles, a capability the company had yet to successfully demonstrate. It seemed like a classic cart before the horse scenario.

But today, not only has SpaceX begun regularly reusing the latest version of their Falcon 9 rocket, but Starlink satellites will soon be in orbit around the Earth. They’re early prototypes that aren’t as capable as the final production versions, and with only 60 of them on the first launch it’s still a far cry from thousands of satellites which would be required for the system to reach operational status, but there’s no question they’re real.

During a media call on May 15th, Elon Musk let slip more technical information about the Starlink satellites than we’ve ever had before, giving us the first solid details on the satellites themselves, what the company’s goals are, and even a rough idea when the network might become operational.

Continue reading “Everything We Know About SpaceX’s Starlink Network”

A Million Zombie Taxis By 2020? It’s Not Going To Happen

The tech world has a love for Messianic figures, usually high-profile CEOs of darling companies whose words are hung upon and combed through for hidden meaning, as though they had arrived from above to our venture-capital-backed prophet on tablets of stone. In the past it has been Steve Jobs or Bill Gates, now it seems to be Elon Musk who has received this treatment. Whether his companies are launching a used car into space, shooting things down tubes in the desert, or synchronised-landing used booster rockets, everybody’s talking about him. He’s a showman whose many pronouncements are always soon eclipsed by bigger ones to keep his public on the edge of their seats, and now we’ve been suckered in too, which puts us on the spot, doesn’t it.

Your Johnny Cab is almost here

The latest pearl of Muskology came in a late April presentation: that by 2020 there would be a million Tesla electric self-driving taxis on the road. It involves a little slight-of-hand in assuming that a fleet of existing Teslas will be software upgraded to be autonomous-capable and that some of them will somehow be abandoned by their current owners and end up as taxis, but it’s still a bold claim by any standard.

Here at Hackaday, we want to believe, but we’re not so sure. It’s time to have a little think about it all. It’s the start of May, so 2020 is about 7 months away. December 2020 is about 18 months away, so let’s give Tesla that timescale. 18 months to put a million self-driving taxis on the road. Can the company do it? Let’s find out.

Continue reading “A Million Zombie Taxis By 2020? It’s Not Going To Happen”

Let’s Talk About Elon Musk’s Submarine

When word first broke that Elon Musk was designing a kid-sized submarine to help rescue the children stuck in Thailand’s Tham Luang cave, it seemed like a logical thing for Hackaday to cover. An eccentric builder of rockets and rocket-launched electric sports cars, pushing his engineering teams and not inconsiderable financial resources into action to save children? All of that talk about Elon being a real life Tony Stark was about to turn from meme into reality; if the gambit paid off, the world might have it’s first true superhero.

With human lives in the balance, and success of the rescue attempt far from assured (regardless of Elon’s involvement), we didn’t feel like playing arm-chair engineer at the time. Everyone here at Hackaday is thankful that due to the heroics of the rescuers, including one who paid the ultimate price, all thirteen lives were saved.

Many said it couldn’t be done, others said even saving half of the children would have been a miracle. But Elon’s submarine, designed and built at a breakneck pace and brought to Thailand while some of the children were still awaiting rescue, laid unused. It wasn’t Elon’s advanced technology that made the rescue possible, it was the tenacity of the human spirit.

Now, with the rescue complete and the children well on their way to returning to their families, one is left wondering about Elon’s submarine. Could it have worked?

Continue reading “Let’s Talk About Elon Musk’s Submarine”

What Is Our Martian Quarantine Protocol?

If you somehow haven’t read or watched War of the Worlds, here’s a spoiler alert. The Martians are brought down by the common cold. You can argue if alien biology would be susceptible to human pathogens, but if they were, it wouldn’t be surprising if aliens had little defense against our bugs. The worrisome part of that is the reverse. Could an astronaut or a space probe bring back something that would ravage the Earth with some disease? This is not science fiction, it is both a historically serious question and one we’ll face in the near future. If we send people to Mars are they going to come back with something harmful?

A Bit of News: Methane Gas Fluctuations on Mars

What got me thinking about this was the mounting evidence that there could be life on Mars. Not a little green man with a death ray, but perhaps microbe-like life forms. In a recent press release, NASA revealed that they not only found old organic material in rocks, but they also found that methane gas is present on Mars and the amount varies based on the season with more methane occurring in the summer months. There’s some dispute about possible inorganic reasons for this, but it is at least possible that the variation is due to increased biological activity during the summer.

Continue reading “What Is Our Martian Quarantine Protocol?”

Hackaday Links: June 3, 2018

All the Radio Shacks are dead. adioS, or something. But wait, what’s this? There are new Radio Shacks opening. Here’s one in Idaho, and here’s another in Claremore, Oklahoma. This isn’t like the ‘Blockbuster Video in Nome, Alaska’ that clings on by virtue of being so remote; Claremore isn’t that far from Tulsa, and the one in Idaho is in a town with a population of 50,000. Are these corporate stores, or are they the (cool) independent Radio Shacks? Are there component drawers? Anyone want to take a field trip and report?

A few years ago, [cnxsoft] bought a Sonoff WiFi switch to control a well pump. Despite this being a way to control the flow of massive amounts of water with an Internet of Things thing, we’re still rocking it antediluvian style, and for the most part this WiFi-connected relay worked well. Until it didn’t. For the past few days, the switch wouldn’t connect to the network, so [cnxsoft] cracked it open to figure out why. There was one burnt component, and more than one electrocuted insect. Apparently, an ant bridged two pins, was shortly electrocuted, and toasted a resistor. It’s a bug, a real bug, in an Internet of Things thing.

eInk is coming to license plates? Apparently. Since an eInk license plate already includes some electronics, it wouldn’t be much to add some tracking hardware for a surveillance state.

Hold up, it’s a press release about crypto hardware. No, not that crypto, the other crypto. Asus has announced a new motherboard that is capable of supporting twenty graphics cards. This isn’t a six-foot-wide motherboard; it’s designed especially for coin mining, and for that, the graphics cards really only need a PCIe x1 connection. The real trick here is not using PCIe headers, and instead piping everything over vertical-mount USB ports. Yes, this is a slight cabling nightmare. So, you still think the early 80s with fluorinert waterfalls and Blinkenlights that played Game of Life was the pinnacle of style in computer hardware? No, this is it right here.

Here’s a book you should readIgnition!: An Informal History of Liquid Rocket Propellants by John Drury Clark is a fantastic book about how modern liquid rocket fuel came to be. Want to know why 60s cartoons and spy movies always referenced a ‘secret rocket fuel formula’ when kerosene and liquid oxygen work just fine? This is that. Back when we covered it, the book, used, on Amazon, cost $500. It’s now in print again and priced reasonably. It’s on the Inc. 9 Powerful Books Elon Musk Recommends list, so you know it’s good. Thanks, [Ben] for sending this one in on the tip line.

Predicting Starman’s Return To Earth

There’s a Starman, waiting in the sky. He’d like to come and meet us, but he’ll have to wait several million years until the Yarkovsky effect brings him around to Earth again.

In case you’ve been living under a rock for the past few weeks, SpaceX recently launched a car into space. This caused much consternation and hand-wringing, but we got some really cool pictures of side boosters landing simultaneously. The test launch for the Falcon Heavy successfully lobbed a Tesla Roadster into deep space with an orbit extending out into the asteroid belt. During the launch coverage, SpaceX said the car would orbit for Billions of years. This might not be true; a recent analysis of the random walk of cars revealed a significant probability of hitting Earth or Venus over the next Million years.

The analysis of the Tesla Roadster relies on the ephemerides provided by JPL’s Horizons database (2018-017A), and predicts the orbit over several hundred years. In the short term — a thousand years or so — there is little chance of a collision with anything. In 2091, however, the Tesla will find itself approaching Earth, and after that, the predicted orbits change drastically. As an aside, we should totally bring the Tesla back in 2091.

Even though the Tesla Roadster, its payload adapter, and the booster are inert objects floating in space right now, that doesn’t mean there aren’t forces acting on it. For small objects orbiting near the sun, the Yarkovsky effect is a huge influence on the orbit when measured on a timescale of millennia. In short, the Yarkovsky effect is a consequence of a spinning object being heated by the sun. As an object (a Tesla, or an asteroid) rotates, the side facing the sun heats up. As this side faces away from the sun, this heat is radiated out, imparting a tiny, tiny force. This force, over a period of millions of years, can send the Tesla into resonances with other planets, eventually sending it crashing into Earth, Venus, or the Sun.

The authors of this paper find there is a 6% chance the Tesla will collide with Earth and a 2.5% chance it will collide with Venus in the next one Million years. In three Million years, the probability of a collision with Earth is 11%. These are, according to the authors, extremely preliminary calculations and more observations are needed. If the Tesla were to hit the Earth, it’s doubtful whatever species populates the planet would notice; the mass of the Tesla is only 1250 Kg, and Earth flies through meteoroids weighing that much very frequently.