When Ignoring Spam Loses You An Ice Surfacer Patent

Bear with us for a moment for a little background. The Rideau Canal Skateway in Ottawa is the world’s largest natural skating rink, providing nearly 8 km of pristine ice surface during the winter. But maintaining such a large ice surface is a challenge. A regular Zamboni can’t do it; the job is just too big. So the solution is a custom machine called the Froster, conceived by Robert Taillefer and built by Sylvain Fredette.

Froster spans almost twenty meters, and carries almost 4000 L of water. There’s no other practical way to maintain almost 8 km of skating rink.

A patent was filed in 2010, granted by the Canadian Intellectual Property Office, and later lost because important notifications started going to an apparently unchecked spam folder. The annual fee went unpaid, numerous emails went unanswered, an expiry date came and went, and that was that.

It’s true that emailed reminders (the agreed-upon — and only — method of contact) going unnoticed to spam was what caused Robert to not take any action until it was too late. We’d all agree that digital assistants in general need to get smarter, and that includes being better at informing the user about automatically-handled things like spam.

But what truly cost Robert Taillefer his patent was having a single point of failure for something very, very important. The lack of any sort of backup method of communication in case of failure or problem meant that this sad experience was, in a way, a disaster just waiting to happen. At least that’s how the Federal Court saw it when he took his complaint to them, and that’s how they continued to see it when he appealed the decision.

If you’ve never heard of the Rideau Canal Skateway or would like to see the Froster in action, check out this short video from the National Capital Commission of Canada, embedded just under the page break.

Continue reading “When Ignoring Spam Loses You An Ice Surfacer Patent”

Solid Tips For Designing Assistive Technology (Or Anything Else, Really)

Do you make things, and have you got almost ten minutes to spare? If not, make the time because this video by [PrintLab] is chock-full of healthy and practical design tips. It’s about effective design of Assistive Technology, but the design concepts extend far beyond that scope.

It’s about making things that are not just functional tools, but objects that are genuinely desirable and meaningful to people’s lives. There are going to be constraints, but constraints aren’t limits on creativity. Heck, some of the best devices are fantastic in their simplicity, like this magnetic spoon.

It’s not just about functionality. Colors, textures, and style are all meaningful — and have never been more accessible.

One item that is particularly applicable in our community is something our own [Jenny List] has talked about: don’t fall into the engineer-saviour trap. The video makes a similar point in that it’s easy and natural to jump straight into your own ideas, but it’s critical not to make assumptions. What works in one’s head may not work in someone’s actual life. The best solutions start with a solid and thorough understanding of an issue, the constraints, and details of people’s real lives.

Another very good point is that designs don’t spring fully-formed from a workbench, so prototype freely using cardboard, models, 3D printing, or whatever else makes sense to you. Don’t be stingy with your prototyping! As long as you’re learning something each time, you’re on the right path.

And when a design is complete? It has the potential to help others, so share it! But sharing and opening your design isn’t just about putting the files online. It’s also about making it as easy as possible for others to recreate, integrate, or modify your work for their own needs. This may mean making clear documentation or guides, optimizing your design for ease of editing, and sharing the rationale behind your design choices to help others can build on your work effectively.

The whole video is excellent, and it’s embedded here just under the page break. Does designing assistive technology appeal to you? If so, then you may be interested in the Make:able challenge which challenges people to design and make a 3D printable product (or prototype) that improves the day-to-day life of someone with a disability, or the elderly. Be bold! You might truly help someone’s life.

Continue reading “Solid Tips For Designing Assistive Technology (Or Anything Else, Really)”

The Lowest-Effort Way Yet To Make 3D Printed Lenses Clear

This technique shared by [Andy Kong] is for 3D printed lenses, but would probably be worth a shot for any resin prints that need to be made nice and clear. The link to his post on X is here, but we’ll summarize below.

It’s entirely possible to print lenses on a resin printer, but some amount of polishing is inevitable because an SLA print still has layer lines, however small. We have seen ways to minimize the work involved to get a usable lens, but when it comes right down to it the printing process creates tiny (but inevitable) surface imperfections that have to be dealt with, one way or another.

3D-printed lenses fresh (and wet) from the printer look clear, but have tiny surface imperfections that must be dealt with.

One technique involves applying a thin layer of liquid resin to the surface of the printed lens, then curing it. This isn’t a complete solution because getting an even distribution of resin over the surface can be a challenge. [Andy] has refined this technique to make it ridiculously simple, and here’s how it works.

After printing the lens, place a drop of liquid resin on the lens surface and stretch some cling wrap over the lens. The cling wrap conforms to the shape and curve of the lens while trapping a super thin layer of liquid resin between the cling wrap film and the lens surface. One then cures the resin while holding the cling film taut. After curing, [Andy] says the film peels right off, leaving an ultra-smooth surface behind. No tedious polishing required!

But what about the flat back of the lens? [Andy] suggests that instead of using cling film (which is better at conforming to a curved surface) simply use a drop of resin in a similar way to bond the flat side of the lens to a smooth piece of glass. Or bond the backs of two lenses together to make a duplex lens. This technique opens quite a few possibilities!

Even if one isn’t 3D printing optical lenses, we suspect this technique might be applicable to making crystal-clear 3D prints with a little less effort than would otherwise be needed.

Keep it in mind, and if you find success (or failure!) let us know on the tips line because we absolutely want to hear about it.

More Details On Why DeepSeek Is A Big Deal

The DeepSeek large language models (LLM) have been making headlines lately, and for more than one reason. IEEE Spectrum has an article that sums everything up very nicely.

We shared the way DeepSeek made a splash when it came onto the AI scene not long ago, and this is a good opportunity to go into a few more details of why this has been such a big deal.

For one thing, DeepSeek (there’s actually two flavors, -V3 and -R1, more on them in a moment) punches well above its weight. DeepSeek is the product of an innovative development process, and freely available to use or modify. It is also indirectly highlighting the way companies in this space like to label their LLM offerings as “open” or “free”, but stop well short of actually making them open source.

The DeepSeek-V3 LLM was developed in China and reportedly cost less than 6 million USD to train. This was possible thanks to developing DualPipe, a highly optimized and scalable method of training the system despite limitations due to export restrictions on Nvidia hardware. Details are in the technical paper for DeepSeek-V3.

There’s also DeepSeek-R1, a chain-of-thought “reasoning” model which handily provides its thought process enclosed within easily-parsed <think> and </think> pseudo-tags that are included in its responses. A model like this takes an iterative step-by-step approach to formulating responses, and benefits from prompts that provide a clear goal the LLM can aim for. The way DeepSeek-R1 was created was itself novel. Its training started with supervised fine-tuning (SFT) which is a human-led, intensive process as a “cold start” which eventually handed off to a more automated reinforcement learning (RL) process with a rules-based reward system. The result avoided problems that come from relying too much on RL, while minimizing the human effort of SFT. Technical details on the process of training DeepSeek-R1 are here.

DeepSeek-V3 and -R1 are freely available in the sense that one can access the full-powered models online or via an app, or download distilled models for local use on more limited hardware. It is free and open as in accessible, but not open source because not everything needed to replicate the work is actually released. Like with most LLMs, the training data and actual training code used are not available.

What is released and making waves of its own are the technical details of how researchers produced what they did, and that means there are efforts to try to make an actually open source version. Keep an eye out for Open-R1!

Winter-Proof (And Improve) Your Resin 3D Printing

Was your 3D printer working fine over the summer, and now it’s not? With colder temperatures comes an overall surge in print failure reports — particularly with resin-based printers that might reside in outbuildings, basements, or garages. If you think this applies to you, don’t miss [Jan Mrázek]’s tips on improving cold-weather print results. His tips target the main reasons prints fail, helping to make the process a little more resilient overall. [Jan]’s advice is the product of long experience and experimentation, so don’t miss out.

With environmental changes comes the possibility that things change just enough to interfere with layers forming properly. The most beneficial thing overall is to maintain a consistent resin temperature; between 22 and 30 degrees Celsius is optimal. A resin heater is one solution, and there are many DIY options using simple parts. Some of the newer (and more expensive) printers have heaters built in, but most existing hobbyist machines do not.

An extreme case of blooming.

Temperature control isn’t the only thing, either. Layer formation and build plate adhesion can all be improved by adding rest times between layers. Yes, this increases print time. It also allows resin to settle before the next layer, improving adhesion and preventing blooming (a rough texture caused by an imperfect cure.) Since resin flows less readily at lower temperatures, rest times can help improve results. The best setting depends heavily on your particular setup, so [Jan] gives tips on finding optimal rest times.

Most common knowledge and advice from well-meaning communities online focuses on increasing exposure time or blaming the build plate. [Jan] feels that these are ultimately the wrong way to go about addressing failures. Usually, an environmental change (like the arrival of winter) has simply pushed a printer that was not optimized in the first place outside of its narrow comfort zone. A little optimization can set things back on track, making the printer more resilient and reliable overall.

Handy Online Metric Screw, Nut, And Washer Generator

For those times when you could really use a quick 3D model, this metric screw generator will do the trick for screws between M2 and M16 with matching nuts and washers. Fastener hardware is pretty accessible, but one never knows when a 3D printed piece will hit the spot. One might even be surprised what can be usefully printed on a decent 3D printer at something like 0.08 mm layer height.

Behind the scenes, [Jason]’s tool is an OpenSCAD script with a very slick web-based interface that allows easy customization of just about any element one might need to adjust, including fine-tuning the thread sizing. We’re fans of OpenSCAD here and appreciate what’s going on behind the scenes, but one doesn’t need to know anything about it to use the online tool.

Generated models can be downloaded as .3mf or .stl, but if you really need a CAD model you’re probably best off looking up a part and downloading the matching 3D model from a supplier like McMaster-Carr.

Prefer to just use the OpenSCAD script yourself, instead of the web interface? Select “Download STL/CAD Files” from the dropdown of the project page to download ScrewGenerator.scad for local use, and you’re off to the races.

RGB LED Display Simply Solves The Ping-Pong Ball Problem

A few years ago [Brian McCafferty] created a nice big RGB LED panel in a poster frame that aimed to be easy to move, program, and display. We’d like to draw particular attention to one of his construction methods. On the software end of things there are multiple ways to get images onto a DIY RGB panel, but his assembly technique is worth keeping in mind.

The diameter of ping pong balls is a mismatch for the spacing of LEDs on a strip. The solution? A bit of force.

The technique we want to highlight is not the fact that he used table tennis balls as the diffusers, but rather the particular manner in which he used them. As diffusers, ping-pong balls are economical and they’re effective. But you know what else they are? An inconvenient size!

An LED strip with 30 LEDs per meter puts individual LEDs about 33 mm apart. A regulation ping-pong ball is 40 mm in diameter, making them just a wee bit too big to fit nicely. We’ve seen projects avoid this problem with modular frames that optimize spacing and layout. But [Brian]’s solution was simply to use force.

Observing that ping-pong balls don’t put up much of a fight and the size mismatch was relatively small, he just shoved those (slightly squashy) 40 mm globes into 33 mm spacing. It actually looks… perfectly fine!

We suspect that this method doesn’t scale indefinitely. Probably large displays like this 1200 pixel wall are not the right place to force a square peg into a round hole, but it sure seemed to hit the spot for his poster-sized display. Watch it in action in the video below, or see additional details on the project’s GitHub repository.

Continue reading “RGB LED Display Simply Solves The Ping-Pong Ball Problem”