Lockdown Remote Control Project Is Free And Open

If you flew or drove anything remote controlled until the last few years, chances are very good that you’d be using some faceless corporation’s equipment and radio protocols. But recently, open-source options have taken over the market, at least among the enthusiast core who are into squeezing every last bit of performance out of their gear. So why not take it one step further and roll your own complete system?

Apparently, that’s what [Malcolm Messiter] was thinking when, during the COVID lockdowns, he started his own RC project that he’s calling LockDownRadioControl. The result covers the entire stack, from the protocol to the transmitter and receiver hardware, even to the software that runs it all. The 3D-printed remote sports a Teensy 4.1 and off-the-shelf radio modules on the inside, and premium FrSky hardware on the outside. He’s even got an extensive folder of sound effects that the controller can play to alert you. It’s very complete. Heck, the transmitter even has a game of Pong implemented so that you can keep yourself amused when it’s too rainy to go flying.

Of course, as we alluded to in the beginning, there is a healthy commercial infrastructure and community around other open-source RC projects, namely ExpressLRS and OpenTX, and you can buy gear that runs those software straight out of the box, but it never hurts to have alternatives. And nothing is easier to customize and start hacking on than something you built yourself, so maybe [Malcolm]’s full-stack RC solution is right for you? Either way, it’s certainly impressive for a lockdown project, and evidence of time well spent.

Thanks [Malcolm] for sending that one in!

First PCB With The Smallest MCU?

[Morten] works very fast. He has already designed, fabbed, populated, and tested a breakout board for the new tiniest microcontroller on the market, and he’s even made a video about it, embedded below.

You might have heard about this new TI ARM Cortex MO micro on these very pages, where we asked you what you’d do with this grain-of-rice-sized chunk of thinking sand. (The number one answer was “sneeze and lose it in the carpet”.)

From the video, it looks like [Morten] would design a breakout board using Kicad 8, populate it, get it blinking, and then use its I2C lines to make a simple digital thermometer demo. In the video, he shows how he worked with the part, from making a custom footprint to spending quite a while nudging it into place before soldering it carefully down.

But he nailed it on the first try, and honestly it doesn’t look nearly as intimidating as we’d feared, mostly because of the two-row layout of the balls. It actually looks easy enough to fan out. Because you can’t inspect the soldering work underneath the chip, he broke out all of the lines to a header to make it quick to check for shorts between those tiny little balls. Smart.

We love to see people trying out the newest hotness. Let us know down in the comments what new parts you’re trying out.

Continue reading “First PCB With The Smallest MCU?”

Vintage Computer Festival East This Weekend

If you’re on the US East Coast, you should head on over to Wall, NJ and check out the Vintage Computer Festival East. After all, [Brian Kernighan] is going to be there. Yes, that [Brian Kernighan].

Events are actually well underway, and you’ve already missed the first few TRS-80 Color Computer programming workshops, but rest assured that they’re going on all weekend. If you’re from the other side of the retrocomputing fence, namely the C64 side, you’ve also got a lot to look forward to, because the theme this year is “The Sounds of Retro” which means that your favorite chiptune chips will be getting a workout.

[Tom Nardi] went to VCF East last year, so if you’re on the fence, just have a look at his writeup and you’ll probably hop in your car, or like us, wish you could. If when you do end up going, let us know how it was in the comments!

70 DIY Synths On One Webpage

If you want to dip your toes into the deep, deep water of synth DIY but don’t know where to start, [Atarity] has just the resource for you. He’s compiled a list of 70 wonderful DIY synth and noise-making projects and put them all in one place. And as connoisseurs of the bleepy-bloopy ourselves, we can vouch for his choices here.

The collection runs the gamut from [Ray Wilson]’s “Music From Outer Space” analog oddities, through faithful recreations like Adafruit’s XOXBOX, and on to more modern synths powered by simple microcontrollers or even entire embedded Linux devices. Alongside the links to the original projects, there is also an estimate of the difficulty level, and a handy demo video for every example we tried out.

Our only self-serving complaint is that it’s a little bit light on the Logic Noise / CMOS-abuse side of synth hacking, but there are tons of other non-traditional noisemakers, sound manglers, and a good dose of musically useful devices here. Pick one, and get to work!

Contagious Ideas

We ran a story about a wall-mounted plotter bot this week, Mural. It’s a simple, but very well implemented, take on a theme that we’ve seen over and over again in various forms. Two lines, or in this case timing belts, hang the bot on a wall, and two motors drive it around. Maybe a servo pulls the pen in and out, but that’s about it. The rest is motor driving and code.

We were thinking about the first such bot we’ve ever seen, and couldn’t come up with anything earlier than Hektor, a spray-painting version of this idea by [Juerg Lehni]. And since then, it’s reappeared in numerous variations.

Some implementations mount the motors on the wall, some on the bot. There are various geometries and refinements to try to make the system behave more like a simple Cartesian one, but in the end, you always have to deal with a little bit of geometry, or just relish the not-quite-straight lines. (We have yet to see an implementation that maps out the nonlinearities using a webcam, for instance, but that would be cool.) If you’re feeling particularly reductionist, you can even do away with the pen-lifter entirely and simply draw everything as a connected line, Etch-a-Sketch style. Maslow CNC swaps out the pen for a router, and cuts wood.

What I love about this family of wall-plotter bots is that none of them are identical, but they all clearly share the same fundamental idea. You certainly wouldn’t call any one of them a “copy” of another, but they’re all related, like riffing off of the same piece of music, or painting the same haystack in different lighting conditions: robot jazz, or a study in various mechanical implementations of the same core concept. The collection of all wall bots is more than the sum of its parts, and you can learn something from each one. Have you made yours yet?

(Fantastic plotter-bot art by [Sarah Petkus] from her write-up ten years ago!)

Your Badminton Racket Needs Restringing? There’s A DIY Machine For That

We don’t often get our badminton rackets restrung, but if we did, [kuokuo702]’s PicoBETH project would be where we’d turn. This is a neat machine build for a very niche application, but it’s also a nicely elaborated project with motors, load cells, and even a sweet knobby-patterned faceplate that is certainly worth a look even if you’re not doing your own restringing.

We’ll admit that everything we know about restringing rackets we learned by watching [kuokuo]’s demo video, but the basic procedure goes like this: you zigzag the string through the holes in the racket, controlling the tension at each stage along the way. A professional racket frame and clamp hold the tension constant while you fiddle the string through the next hole, but getting the tension just right in the first place is the job of [kuokuo]’s machine. It does this with a load cell, stepper motor, and ball screw, all under microcontroller control. Pull the string through, let the machine tension it, clamp it down, and then move on to the next row.

Automating the tension head allows [kuokuo] to do some fancy tricks, like pre-stretching the strings and even logging the tension in the string at each step along the way. The firmware has an extensive self-calibration procedure, and in all seems to be very professional. But it’s not simply functional; it also has a fun LEGO-compatible collection of bumps integrated into the 3D-printed dust cover. That way, your minifigs can watch you at work? Why not!

Automating random chores is a great excuse to build fun little machines, and in that vein, we salute [kuokuo]’s endeavor. Once you start, you’ll find stepper motors sprouting all around like crocuses in a spring field. And speaking of spring, Easter is just around the corner. So if you don’t play badminton, maybe it’s time to build yourself an eggbot.

Continue reading “Your Badminton Racket Needs Restringing? There’s A DIY Machine For That”

Supercon 2024: Killing Mosquitoes With Freaking Drones, And Sonar

Suppose that you want to get rid of a whole lot of mosquitoes with a quadcopter drone by chopping them up in the rotor blades. If you had really good eyesight and pretty amazing piloting skills, you could maybe fly the drone yourself, but honestly this looks like it should be automated. [Alex Toussaint] took us on a tour of how far he has gotten toward that goal in his amazingly broad-ranging 2024 Superconference talk. (Embedded below.)

The end result is an amazing 380-element phased sonar array that allows him to detect the location of mosquitoes in mid-air, identifying them by their particular micro-doppler return signature. It’s an amazing gadget called LeSonar2, that he has open-sourced, and that doubtless has many other applications at the tweak of an algorithm.

Rolling back in time a little bit, the talk starts off with [Alex]’s thoughts about self-guiding drones in general. For obstacle avoidance, you might think of using a camera, but they can be heavy and require a lot of expensive computation. [Alex] favored ultrasonic range finding. But then an array of ultrasonic range finders could locate smaller objects and more precisely than the single ranger that you probably have in mind. This got [Alex] into beamforming and he built an early prototype, which we’ve actually covered in the past. If you’re into this sort of thing, the talk contains a very nice description of the necessary DSP.

[Alex]’s big breakthrough, though, came with shrinking down the ultrasonic receivers. The angular resolution that you can resolve with a beam-forming array is limited by the distance between the microphone elements, and traditional ultrasonic devices like we use in cars are kinda bulky. So here comes a hack: the TDK T3902 MEMS microphones work just fine up into the ultrasound range, even though they’re designed for human hearing. Combining 380 of these in a very tightly packed array, and pushing all of their parallel data into an FPGA for computation, lead to the LeSonar2. Bigger transducers put out ultrasound pulses, the FPGA does some very intense filtering and combining of the output of each microphone, and the resulting 3D range data is sent out over USB.

After a marvelous demo of the device, we get to the end-game application: finding and identifying mosquitoes in mid-air. If you don’t want to kill flies, wasps, bees, or other useful pollinators while eradicating the tiny little bloodsuckers that are the drone’s target, you need to be able to not only locate bugs, but discriminate mosquitoes from the others.

For this, he uses the micro-doppler signatures that the different wing beats of the various insects put out. Wasps have a very wide-band doppler echo – their relatively long and thin wings are moving slower at the roots than at the tips. Flies, on the other hand, have stubbier wings, and emit a tighter echo signal. The mosquito signal is even tighter.

If you told us that you could use sonar to detect mosquitoes at a distance of a few meters, much less locate them and differentiate them from their other insect brethren, we would have thought that it was impossible. But [Alex] and his team are building these devices, and you can even build one yourself if you want. So watch the talk, learn about phased arrays, and start daydreaming about what you would use something like this for.

Continue reading “Supercon 2024: Killing Mosquitoes With Freaking Drones, And Sonar”