Hackaday Podcast 216: FETs, Fax, And Electrochemical Fab

In this week’s podcast, non-brothers Elliot Williams and Al Williams talk about our favorite hacks of the week. Elliot’s got analog on the brain, courtesy of the ongoing Op Amp Contest, and Al is all about the retrocomputers, from a thrift-store treasure to an old, but still incredibly serviceable, voice synthesizer. Both agree that they love clever uses of mechanical parts and that nobody should fear the FET.

Check out the links below if you want to follow along, and as always, tell us what you think about this episode in the comments!

Download your own personal copy!

Continue reading “Hackaday Podcast 216: FETs, Fax, And Electrochemical Fab”

The Freedom To Fail

When you think of NASA, you think of high-stakes, high-cost, high-pressure engineering, and maybe the accompanying red tape. In comparison, the hobby hacker has a tremendous latitude to mess up, dream big, and generally follow one’s bliss. Hopefully you’ll take some notes. And as always with polar extremes, the really fertile ground lies in the middle.

[Dan Maloney] and I were thinking about this yesterday while discussing the 50th flight of Ingenuity, the Mars helicopter. Ingenuity is a tech demo, carrying nothing mission critical, but just trying to figure out if you could fly around on Mars. It was planned to run for five flights, and now it’s done 50.

The last big tech demo was the Sojourner Rover. It was a small robotic vehicle the size of a microwave oven that they hoped would last seven days. It went for 85, and it gave NASA the first taste of success it needed to follow on with 20 years of Martian rovers.

Both of these projects were cheap, by NASA standards, and because they were technical demonstrators, the development teams were allowed significantly more design freedom, again by NASA standards.

None of this compares to the “heck I’ll just hot-air an op-amp off an old project” of weekend hacking around here, but I absolutely believe that a part of the tremendous success of both Sojourner and Ingenuity were due to the risks that the development teams were allowed to take. Creativity and successful design thrives on the right blend of constraint and freedom.

Will Ingenuity give birth to a long series of flying planetary rovers as Sojourner did for her rocker-bogie based descendants? Too early to tell. But I certainly hope that someone within NASA is noticing the high impact that these technical demonstrator projects have, and also noting why. The addition of a little bit of hacker spirit to match NASA’s professionalism probably goes a long way.

VCF East 2023: Andy Geppert Talks Core Memory

Do you know core memory? Our prehistoric predecessors would store data in the magnetic fields of ferrite rings, reading out the ones and zeroes by setting the magnetic field and detecting if a small current is induced in a sense wire, indicating that the bit flipped, or not detecting the current, in which case it didn’t. Core memory is non-volatile, rad hard, and involved a tremendous amount of wire weaving to fabricate. And it’s pretty cool.

[Andy Geppert] wants to get you hands-on with this anachronistic memory, and builds kits to demo how it works. [Tom Nardi] and [Bil Herd] caught up with him at the Vintage Computer Festival East last weekend, and got him to demo his Core64 project for them. (Video, embedded below.)

The design of Core64 displays its state in lights at all times. And this means that you can write to it using either the onboard Pi Pico, for a blinky light show, or with a magnetic stylus, setting each bit’s magnetic state by hand. This turns it into a magnetic memory tablet and is a sweet demonstration of the principles that make it all work. Or, if you pulse the lines at just the right frequency, you can make the cores spin!

Watch [Andy] explaining it in our interview here, and stay tuned for more coming from VCF East 2023 soon.

Continue reading “VCF East 2023: Andy Geppert Talks Core Memory”

Last Chance To Re-engineer Education For The 2023 Hackaday Prize

The first round of the 2023 Hackaday Prize closes next Tuesday, March April 25th. If you’ve got an educational project – whether that’s a robot technique you just need to share, or an instructional radio build – you’ve got this weekend left to get your project into shape, whip up a Hackaday.io page in support, and enter. The top 10 projects get a $500 prize award, and a chance to win the big prizes in the final round. You want to get your project in now.

We’ve already seen some great entries into this first round of the Prize. Ranging from a trainer robot for First Robotics teams, through a complete learn-electronics kit on a PCB, building radios in High Schools, and all the way to an LED-and-lightpipe map to help teachers and students with their geography lessons, we’ve got a broad range of educational projects so far.

But there is still room for your project! And with the deadline closing in, your best bet at the $500 prize money relies on you burning a bit of the midnight oil this weekend, but Hackaday glory awaits those who do.

Sufficiently Advanced Tech: Has Bugs

Arthur C. Clarke said that “Any sufficiently advanced technology is indistinguishable from magic”. He was a sci-fi writer, though, and not a security guy. Maybe it should read “Any sufficiently advanced tech has security flaws”. Because this is the story of breaking into a car through its headlight.

In a marvelous writeup, half-story, half CAN-bus masterclass, [Ken Tindell] details how car thieves pried off the front headlight of a friend’s Toyota, and managed to steal it just by saying the right things into the network. Since the headlight is on the same network as the door locks, pulling out the bulb and sending the “open the door” message repeatedly, along with a lot of other commands to essentially jam some other security features, can pull it off.

Half of you are asking what this has to do with Arthur C. Clarke, and the other half are probably asking what a lightbulb is doing on a car’s data network. In principle, it’s a great idea to have all of the electronics in a car be smart electronics, reporting their status back to the central computer. It’s how we know when our lights are out, or what our tire pressure is, from the driver’s seat. But adding features adds attack surfaces. What seems like magic to the driver looks like a gold mine to the attacker, or to car thieves.

With automotive CAN, security was kind of a second thought, and I don’t mean this uncharitably. The first goal was making sure that the system worked across all auto manufacturers and parts suppliers, and that’s tricky enough. Security would have to come second. And more modern cars have their CAN networks encrypted now, adding layers of magic on top of magic.

But I’m nearly certain that, when deciding to replace the simple current-sensing test of whether a bulb was burnt out, the engineers probably didn’t have the full cost of moving the bulb onto the CAN bus in mind. They certainly had dreams of simplifying the wiring harness, and of bringing the lowly headlight into the modern age, but I’d bet they had no idea that folks were going to use the headlight port to open the doors. Sufficiently advanced tech.

Congratulations Low-Power Winners

Congratulations to the winners of the 2023 Hackaday.io Low Power Contest! We challenged you to show us how much you could do with how little, and you did not disappoint. Our judges have put their heads together, and thanks to Digi-Key, our contest sponsor, the top three entries will be taking home a $150 gift certificate for yet more hacking supplies.

We saw a great diversity of ideas here, all on the low-power theme. So without further ado…

The Prize Winners

[Christoph]’s Ultra Low Power RF-Sensor arose out of necessity. Having just repaired a shower drain, he couldn’t be sure that it wouldn’t start leaking again at some point in the future, but couldn’t go ripping up the floor under the shower tray every week to check. He needed a remote moisture sensor that would do the job for a long time with no intervention.

This superb solution combines an Atmel ATmega328P, an HDC1080 humidity sensor, a 433 MHz radio transmitter, and an RTC to keep power consumption super-low when everything else is shut down. Idling at 600 nA total most of the time, taking a reading every 15 minutes, this device should last for 12 years, and it’s been installed and running for five so far, so we’d say that it’s already proven itself very worthy of taking home the prize here.

[BleakyTex]’s Compact, low-power Geiger counter is absolutely the lowest power Geiger counter we’ve ever seen and maybe also the cutest. With the ambitious goal of running up to two years on two tiny LR44 batteries and a proven runtime of about six months by now, this is the radiation detector you can take with you every day, should you need to. The key is a custom HV section that’s designed for efficiency and the screen – even today, it’s still hard to beat the low power consumption of the humble LCD screen. All this, and it still makes those satisfying clicks when it’s enabled. [BleakyTex] says he might make a kit from this, and we absolutely hope he does!

[mircemk]’s Microwatt Pulse Motor took one of our suggestions in the announcement of the contest and ran with it. This eight-pole handmade electric motor doesn’t actually do anything other than spin, but it does that when hooked up to a literal potato. Pulling around 40 mA at 600 mV, it can easily run on solar power with enough power left over to charge up a battery for when the sun doesn’t shine. All of this is made with extremely simple circuitry and parts scavenged from old relays with a sewing needle held up by a magnet for the bearing. This is pure ingenuity and a sweet low-power demo.

Continue reading “Congratulations Low-Power Winners”

Analog Anoraks: The Op Amp Contest Starts Now!

We thought it was time to give the analog side of Hackaday their chance to shine, and what’s the quintessential analog IC? The op amp! Whether you’re doing tricky signal conditioning, analog computations like it’s 1960, or just making music sound good, op amps are at the heart of many designs. This contest, starting right now, is your chance to show off what you can do with a good op amp, or a few.

And for everyone else, here’s your chance to dip your toes into the warm analog waters. Whether you’ve always wanted to build a Chua’s chaos circuit or just to listen to music, there’s probably an op-amp project that will fit your personal bill. All you have to do to enter is set up a project on Hackaday.io, and use the pull-down menu to enter. We welcome shows of op-amp bravado, naturally, but we’re also stoked to see your simple projects that might help our digital friends leave their world of black and white, and enter into the shades of grey.

Thanks to Digi-Key, our sponsor for the challenge, there are three $150 shopping sprees on the line for the winners. And as always, there are some honorable mention categories to help whet your analog whistle, and to give us an excuse to feature a lot of great projects. You’ve got until June 6, to get your entry in, but these aren’t necessarily simple builds, so get going now.

Continue reading “Analog Anoraks: The Op Amp Contest Starts Now!”