An Online Repository For KiCad Schematics

In the desktop 3D printing world, we’re fortunate to have multiple online repositories of models that anyone can load up on their machine. Looking to create a similar experience but for electronic projects, [Mike Ayles] created CircuitSnips — a searchable database of ready-to-use KiCad schematics available under open source licenses.

Looking for reference designs for LiPo chargers? CircuitSnips has you covered. Want to upload your own design so others can utilize it? Even better. Currently, there are over four thousand circuits on CircuitSnips, although not all have been put there purposely. To get the project off the ground, [Mike] scrapped GitHub for open source KiCad projects. While this doesn’t run afoul of the licensing, there’s a mechanism in place for anyone who wants to have their project removed from  the repository.

To scrape the depths of GitHub, [Mike] had to simplify the text expression for the KiCad projects using a tool he’s since released. For anyone so inclined, he’s even put the entire site on GitHub for anyone who wants to try their hand at running it locally.

CircuitSnaps fills a very specific space to post your circuit diagrams, but if you’re looking for somewhere to host your complete designs, we can’t fail to mention Hackaday’s own repository for hardware projects and hacks!

Image of paten office's official statement of IPR change

US Patent Changes Promise Severe Consequences

When someone creates a US patent, they go through a review process to stop the most blatant copies from previous patents or pre-existing work. After this, you may still have bad patents get through, which can be removed through litigation or publicly accessible methods such as Inter Partes Review (IPR). The latter of which is planned to be changed as we know it in the near future.

IPR is a method where an individual can claim that an existing patent is invalid due to pre-existing work, such as something the individual should have creative ownership over. While there is always the litigation method of removing blatantly fraudulent patents, a small business or the average person is unlikely to have the funds.

New regulations are changing how IPRs can be filed in some substantial ways. Now, if someone files an IPR, they give up the right to future litigation on their rights over a patent. This is obviously not ideal for someone who may have their own products on the line if an IPR is to fail. Additionally, IPRs will no longer be able to be even tried if there are existing cases against the patent, even under poor previous cases. While this change is meant to increase the efficiency of the patent office, there are some serious consequences that must be looked into either way. The patent office also cites IPRs being beneficial to larger organizations rather than the smaller businesses, though you can make your own conclusions based on the U.S. Patent and Trademark Office’s arguments here.

Hackaday certainly can not give any legal advice on how this change will affect you, but there are cases given by both sides that may persuade you to write to your legal representatives if you live in the States. Even still, we here at Hackaday have seen our fair share of patent trolls causing issues. If you want a case of blatant patent shenanigans check out these 3D printing layers that promise improved strength!

Thanks [patentTrollsAreTheWorst] for the tip!

Snapshot of topology analysis

Designing PLA To Hold Over A Metric Ton

There’s never been such a thing as being “too competitive” when it comes to competition. This is something that [Tom Stanton] from “Tim Station”, [Tom]’s 2nd channel, took to heart for Polymaker’s 3D design challenge. The goal was simple: a single 3D printed part to hold as much weight as possible.

While seemingly simple, when considering the requirements, including a single print in addition to being able to open up for the mounts, the challenge gets exponentially more complicated. While the simplest and strongest joint would be a simple oval for uniform stress, this isn’t possible when considering the opening requirements. This creates a need for slightly more creativity.

[Tom] starts out with two flat C-shaped geometries to test his design. The design includes teeth specially placed to allow the forces to increase their own strength as force is applied. Flat features have the unfortunate quality of being able to slide across each other rather easily, which was the case during testing; however, the actual structures held up rather well. Moving onto the final design, including a hollow cavity and a much thicker depth, showed good promise early on in the competition, leading up to the finals. In fact, the design won out over anything else, getting over double the max strength of the runner up. Over an entire metric ton, the piece of plastic proved its abilities far past anything us here at Hackaday would expect from a small piece of PLA.

Design can be an absolute rabbit hole when it comes to even the simplest of things, as shown with this competition. [Tom] clearly showed some personal passion for this project; however, if you haven’t had the chance to dive this deep into CADing, keep sure to try out something like TinkerCAD to get your feet wet. TinkerCAD started out simple as can be but has exploded into quite the formidable suite!

Continue reading “Designing PLA To Hold Over A Metric Ton”

Small camera with greyscale image

Camera Capabilities Unlocked From A Mouse

There is a point where taking technology for granted hides some of the incredible capabilities of seemingly simple devices. Optical mice are a great example of this principle, using what are more or less entirely self-contained cameras just for moving the cursor across your screen. Don’t believe us? Check out this camera made from an old optical mouse from [Dycus]!

For those unfamiliar with optical mice, the sensor used for tracking movement, like a camera, is just an array of photosensitive sensors. This allows a simple on-board microcontroller to convert the small changes from the visual sensor into acceleration/movement information to be sent to the computer.

Proving how capable these sensors can truly be, [Dycus]’s camera manages a whole 30×30 array of picture quality. Along with glorious greyscale, the pictures achieved from such a camera are more than recognizable. Putting together the camera didn’t even require anything crazy beyond the sensor itself. What appears to be a Teensy LC board, basic buttons, and a small screen are essentially everything required to replicate the camera’s functionality. Pictures, both standard and “panoramic”, can be viewed in a variety of color palettes stored on board. Along with a surprisingly impressive feature set, the idea is impressive.

Limitations are often the mother of innovation, no matter if self-imposed or not, as seen here. However, [Dycus] still had a whole 30×30 array to photograph. What about a single pixel? Let’s make it even harder; we can’t look directly at the subject! This is exactly what was done here in this impressive demonstration of clever engineering.

Thanks to JohnU and Thinkerer for the tip!

Guitar Picks made from recycled sheets

Artsy And Durable Recycling From A Heat Press

Plastic recycling is something that many of us strive to accomplish, but we often get caught up in the many hurdles along the way. [Brothers Make] are experienced in the world of plastic recycling and graced us with a look into a simple and reliable way to get consistent thin sheets of durable plastic. Using a common T-shirt press and a mixture of plastic scraps, you can get the process down quickly.

Summarizing the process is pretty easy due to its simplicity. You take a T-shirt press, put some Teflon baking sheets on both sides of some plastic scraps, and then press. Repeating this a couple of times with different colored plastic will get you a nice looking sheet of usable sheets for any purpose you could dream of. Thicker pieces can have some life changing applications, or as simple as guitar picks, as shown by [Brothers Make].

Make sure to try out this technique yourself if you have access to a press! Overuse of plastic is a widely known issue, and yet it feels like almost no one attempts to solve it. If you want a different kind of application, try making your own 3D printing filament out of recycled plastic!

Continue reading “Artsy And Durable Recycling From A Heat Press”

Alec using the arc spraying device

Make Metal Rain With Thermal Spraying

For those of us hackers who have gone down a machining rabbit hole, we all know how annoying it can be to over-machine a part. Thermal spraying, while sounding sci-fi, is a method where you can just spray that metal back on your workpiece. If you don’t care about machining, how about a gun that shoots a shower of sparks just to coat your enemies in a layer of metal? Welcome to the world of thermal spraying, led by the one and only [Alec Steele].

There are three main techniques shown that can be used to coat using metal spools. The first, termed flame spraying, uses a propane flame and compressed air to blast fine drops of molten metal onto your surface. A fuel-heavy mixture allows the metal to remain unoxidized and protect any surface beneath. Perhaps one of the most fun to use is the arc method of thermal spray. Two wires feed together to short a high current circuit; all it takes from there is a little pressured air to create a shower of molten metal. This leaves the last method similar to the first, but uses a powder material rather than the wires used in flame spraying.

As with much crazy tech, the main uses of thermal spraying are somewhat mundane. Coating is applied to prevent oxidation, add material to be re-machined, or improve the mechanical resistance of a part. As expensive as this tech is, we would love to see someone attempt an open-source version to allow all of us at Hackaday to play with. Can’t call it too crazy when we have people making their own X-ray machines.

Continue reading “Make Metal Rain With Thermal Spraying”

Audio field emission map

Audio Sound Capture Project Needs Help

When you are capturing audio from a speaker, you are rarely capturing the actual direct output of such a system. There are reflections and artifacts caused by anything and everything in the environment that make it to whatever detector you might be using. With the modern computation age, you would think there would be a way to compensate for such artifacts, and this is what [d.fapinov] set out to do.

[d.fapinov] has put together a code base for simulating and reversing environmental audio artifacts made to rival systems, entirely orders of magnitude higher in cost. The system relies on similar principles used in radio wave antenna transmission to calculate the audio output map, called spherical harmonic expansion. Once this map is calculated and separated from outside influence, you can truly measure the output of an audio device.

The only problem is that the project needs to be tested in the real world. [d.fapinov] has gotten this far but is unable to continue with the project. A way to measure audio from precise locations around the output is required, as well as the appropriate control for such a device.

Audio enthusiasts go deep into this tech, and if you want to become one of them, check out this article on audio compression and distortion.