Upcycling An IPad Into A Touchscreen Display For Your PC

Installing an RPi Pico board like it's a modchip. (Credit: Tucker Osman, YouTube)
Installing an RPi Pico board like it’s a modchip. (Credit: Tucker Osman, YouTube)

Although generally iPads tend to keep their resale value, there are a few exceptions, such as when you find yourself burdened with iCloud-locked devices. Instead of tossing these out as e-waste, you can still give them a new, arguably better purpose in life: an external display, with touchscreen functionality if you’re persistent enough. Basically someone like [Tucker Osman], who spent the past months on making the touchscreen functionality play nice in Windows and Linux.

While newer iPads are easy enough to upcycle as an external display as they use eDP (embedded Display Port), the touch controller relies on a number of chips that normally are initialized and controlled by the CPU. Most of the time was thus spent on reverse-engineering this whole process, though rather than a full-depth reverse-engineering, instead the initialization data stream was recorded and played back.

This thus requires that the iPad can still boot into iOS, but as demonstrated in the video it’s good enough to turn iCloud-locked e-waste into a multi-touch display. The SPI data stream that would normally go to the iPad’s SoC is instead intercepted by a Raspberry Pi Pico board which pretends to be a USB HID peripheral to the PC.

If you feel like giving it a short yourself, there’s the GitHub repository with details.

Thanks to [come2] for the tip.

Continue reading “Upcycling An IPad Into A Touchscreen Display For Your PC”

Guitar Picks made from recycled sheets

Artsy And Durable Recycling From A Heat Press

Plastic recycling is something that many of us strive to accomplish, but we often get caught up in the many hurdles along the way. [Brothers Make] are experienced in the world of plastic recycling and graced us with a look into a simple and reliable way to get consistent thin sheets of durable plastic. Using a common T-shirt press and a mixture of plastic scraps, you can get the process down quickly.

Summarizing the process is pretty easy due to its simplicity. You take a T-shirt press, put some Teflon baking sheets on both sides of some plastic scraps, and then press. Repeating this a couple of times with different colored plastic will get you a nice looking sheet of usable sheets for any purpose you could dream of. Thicker pieces can have some life changing applications, or as simple as guitar picks, as shown by [Brothers Make].

Make sure to try out this technique yourself if you have access to a press! Overuse of plastic is a widely known issue, and yet it feels like almost no one attempts to solve it. If you want a different kind of application, try making your own 3D printing filament out of recycled plastic!

Continue reading “Artsy And Durable Recycling From A Heat Press”

DIY Powerwall Blows Clouds, Competition Out Of The Water

Economists have this idea that we live in an efficient market, but it’s hard to fathom that when disposable vapes are equipped with rechargeable lithium cells. Still, just as market economists point out that if you leave a dollar on the sidewalk someone will pick it up, if you leave dollars worth of lithium batteries on the sidewalk, [Chris Doel] will pick them up and build a DIY home battery bank that we really hope won’t burn down his shop.

Testing salvaged batteries.

The Powerwall-like arrangement uses 500 batteries salvaged from disposable vapes. His personal quality control measure  while pulling the cells from the vapes was to skip any that had been discharged past 3 V. On the other hand, we’d be conservative too if we had to live with this thing, solid brick construction or not.

That quality control was accomplished by a clever hack in and of itself: he built a device to blow through the found vapes and see if they lit up. (That starts at 3:20 in the vid.) No light? Not enough voltage. Easy. Even if you’re not building a hoe powerbank, you might take note of that hack if you’re interested in harvesting other people’s deathsticks for lithium cells. The secret ingredient was the pump from a CPAP machine. Actually, it was the only ingredient.)

In another nod to safety, he fuses every battery and the links between the 3D printed OSHA unapproved packs. The juxtoposition between janky build and careful design nods makes this hack delightful, and we really hope [Chris] doesn’t burn down his shed, because like the cut of his jib and hope to see more hacks from this lad. They likely won’t involve nicotine-soaked lithium, however, as the UK is finally banning disposable vapes.

In some ways, that’s a pity, since they’re apparently good for more than just batteries — you can host a website on some of these things. How’s that for market efficiency?

Continue reading “DIY Powerwall Blows Clouds, Competition Out Of The Water”

Repurposing Dodgy Android TV Boxes As Linux Boxes

Marketplaces and e-waste recycling centers are practically overflowing with the things: ARM-based streaming TV boxes that run some — usually very outdated and compromised — version of Android. While you can use them for their promised streaming purposes, they’re invariably poorly optimized and often lie about their true hardware specifications. Which leaves the most important question: can you install Linux on these SBCs and use them as a poor man’s Raspberry Pi alternative? The answer, according to [Oleksii’s Tech] on YouTube is ‘sorta’.

The fake H313 TV box SBC in all its glory. (Credit: Oleksii's Tech, YouTube)
The fake H313 TV box SBC in all its glory. (Credit: Oleksii’s Tech, YouTube)

The commonly seen X96Q clone Android TV box that [Oleksii] bought for $10 is a good example. The clone advertises itself as based on a quad-core Cortex-A53 AllWinner H313 SoC, like the genuine X96Q, but actually has a Rockchip RK3229 inside with correspondingly far lower performance. After you have determined what the actual hardware inside the box is, you can get a copy of Armbian for that particular SoC. Here, the Rk322x-box minimal image was used, with the box booting straight off an SD card. Some Android TV boxes require much more complicated methods to even boot off external media, so this was a lucky break.

Continuing the hardware scam, it was advertised as having 2 GB of RAM and 16 GB of Flash, but it actually has just 1 GB of RAM and 8 GB of eMMC Flash. This was enough to get Armbian desktop up and running, but that’s about all you can do. Desktop application performance was atrocious, mostly due to the CPU’s quad Cortex-A7 cores struggling to keep up.

As also suggested in the comments, the best use for these low-spec SBCs is probably to run light server applications on them, including Pi-Hole, Samba, an IRC bouncer, and so on. They’re pretty low-power, often have the requisite Ethernet built in, and it keeps another bit of potential e-waste from getting scrapped.

Continue reading “Repurposing Dodgy Android TV Boxes As Linux Boxes”

Hosting A Website On A Disposable Vape

For the past years people have been collecting disposable vapes primarily for their lithium-ion batteries, but as these disposable vapes have begun to incorporate more elaborate electronics, these too have become an interesting target for reusability. To prove the point of how capable these electronics have become, [BogdanTheGeek] decided to turn one of these vapes into a webserver, appropriately called the vapeserver.

While tearing apart some of the fancier adult pacifiers, [Bogdan] discovered that a number of them feature Puya MCUs, which is a name that some of our esteemed readers may recognize from ‘cheapest MCU’ articles. The target vape has a Puya PY32F002B MCU, which comes with a Cortex-M0+ core at 24 MHz, 3 kB SRAM and 24 kB of Flash. All of which now counts as ‘disposable’ in 2025, it would appear.

Even with a fairly perky MCU, running a webserver with these specs would seem to be a fool’s errand. Getting around the limited hardware involved using the uIP TCP/IP stack, and using SLIP (Serial Line Internet Protocol), along with semihosting to create a serial device that the OS can use like one would a modem and create a visible IP address with the webserver.

The URL to the vapeserver is contained in the article and on the GitHub project page, but out of respect for not melting it down with an unintended DDoS, it isn’t linked here. You are of course totally free to replicate the effort on a disposable adult pacifier of your choice, or other compatible MCU.

RC rover/car with red and yellow-sided wheels. Electronics are visible on top of vehicle.

An RC Car Driven With Old 3D Printer Motors

With the newer generation of quick and reliable 3D printers, we find ourselves with the old collecting dust and cobwebs. You might pull it out for an emergency print, that is if it still works… In the scenario of an eternally resting printer (or ones not worth reviving), trying to give new life to the functional parts is a great idea. This is exactly what [MarkMakies] did with a simple RC rover design from an old Makerbot Replicator clone. 

Using a stepper motor to directly drive each wheel, this rover proves its ability to handle a variety of terrain types. Stepper motors are far from the most common way to drive an RC vehicle, but they can certainly give enough power. Controlling these motors is done from a custom protoboard, allowing the use of RC control. Securing all these parts together only requires a couple of 3D printed parts and the rods used to print them. Throw in a drill battery for power, and you can take it nearly anywhere! 

Continue reading “An RC Car Driven With Old 3D Printer Motors”

Reusing An Old Android Phone For GPIO With External USB Devices

Each year millions of old smartphones are either tossed as e-waste or are condemned to lie unloved in dusty drawers, despite the hardware in them usually being still perfectly fine. Reusing these little computers for another purpose once the phone’s manufacturer drops support is made hard by a range of hardware and software (driver) issues. One possible way to do so is suggested by [Doctor Volt] in a video where a Samsung Galaxy S4 is combined with a USB-connected FT232R board to add external GPIO.

The idea is pretty simple: the serial adapter is recognized by the existing Android OS and within the standard Android development environment this module can be used. Within this demonstrator it’s merely used to blink some LEDs and react to inputs, but it shows how to reuse one of these phones in a non-destructive manner. Even better is that the phone’s existing sensors and cameras can still be used as normal in this way, too, which opens a whole range of (cheap) DIY projects that can be programmed either in Java/Kotlin or in C or C++ via the Native Development Kit.

The only wrinkle is that while the phone is connected like this, charging is not possible. For the S4 it’s easy to solve as it has a removable battery, so an external power input was wired in with a dummy battery-sized bit of perfboard. With modern phones without removable batteries simultaneous USB/audio dongle and charging usage via the USB-C connector is claimed to be possible, but this is something to check beforehand.

Continue reading “Reusing An Old Android Phone For GPIO With External USB Devices”