Antweight Combat Robot Tips, Shared From Experience

[Harry]’s newest robot, the MotherLoader V2, looks fantastic but was ultimately more of a learning experience and test bed for some experimental features. Luckily for us, [Harry] created a lengthy write-up detailing everything that he tried and revised.

3D printing and aluminum both feature heavily in antweight robots, in part because when contestants are limited to 150 grams it’s safe to say that every bit counts. We recommend reading [Harry]’s entire article to get all the details, but here are some of the bigger takeaways.

Treads provide a lot of contact surface, but there are a lot of ways they can go wrong. Pliability and grip have to be good matches for the robot’s design, otherwise the tread might bunch up or otherwise perform poorly when trying to maneuver. [Harry] had several dud efforts, but ended up with a great result by borrowing an idea from another competitor: composite tracks.

These have an inner track printed from flexible TPU filament, and an outer layer formed by casting silicone directly onto the 3D printed core. It’s a somewhat involved process, but the result is a durable and custom-fitted inner track on the inside, and a softer grip outside. Best of both worlds, and easily tailored to match requirements.

Speaking of TPU, [Harry] discovered that it can be worth printing structural parts with TPU. While ABS is usually the material of choice for durable components, printing solid parts in TPU has a lot to recommend it when it comes to 150 gram robots. Not only can TPU parts be stiff enough to hold up structurally, but they can really take a beating and happily spring back into shape afterwards.

We’ve seen [Harry]’s work before on antweight combat robots, and it’s always nice to peek behind the scenes and gaze into the details. Especially for processes like this, where failures are far more educational than successes.

A Crowned Pulley Keeps Robot’s Treads On Track

[Angus] at Maker’s Muse recently created a new and tiny antweight combat robot (video, embedded below) and it has some wonderfully clever design elements we’d like to highlight. In particular: how to keep a tracked robot’s wheel belt where it belongs, and prevent it from slipping or becoming dislodged. In a way, this problem was elegantly solved during the era of the steam engine and industrial revolution. The solution? A crowned pulley.

Silicone bracelet and crowned pulley result in a self-centering belt with a minimum of parts.

A crowned pulley is a way of automatically keeping a flat belt centered by having a slight hump in the center of the pulley, which tapers off on either side. Back when steam engines ran everything, spinning axles along the ceiling transferred their power to machinery on the shop floor via flat belts on pulleys. Crowned pulleys kept those flat belts centered without any need for rims or similar additions.

The reason this worked so well for [Angus]’s robot is partly its simplicity, and partly the fact that it works fantastically with the silicone wrist bracelets he uses as treads. These bracelets are like thick rubber bands, and make excellent wheel substitutes. They have great grip, are cheap and plentiful, and work beautifully with crowned pulleys as the hubs. It’s a great solution for a tiny robot, and you can how it self-centers in the image here.

Antweight robots are limited to 150 grams which means every bit counts, and that constraint leads to some pretty inventive design choices. For example, [Angus]’s new robot also has a clever lifter mechanism that uses a 4-bar linkage designed to lever opponents up using only a single motor for power. Watch [Angus] explain and demonstrate everything in his usual concise and clear manner in the video, embedded below.

Continue reading “A Crowned Pulley Keeps Robot’s Treads On Track”

Small Combat Robots Pack A Punch In Antweight Division

Two robots enter, one robot leaves! Combat robotics are a fantastic showcase of design and skill, but the mechanical contenders don’t have to be big, heavy, and expensive. There is an Antweight division for combat robots in which most contenders weigh a mere 150 grams, and [Harry Makes Things] shows off four participants for Antweight World Series (AWS) 64.

Clockwise: ReLoader, Shakma, Sad Ken, and HobGoblet antweight combat robots.

Each of them have very different designs, and there are plenty of photos as well as insightful details about what was done and how well it worked. That’s exactly the kind of detail we love to read about, so huge thanks to [Harry] for sharing!

In combat robotics, contenders generally maneuver their remote-controlled machines to pin or immobilize their opponent. This can happen as a result of damaging them to the point that they stop functioning, but it can also happen by rending them helpless by working some kind of mechanical advantage. Continue reading “Small Combat Robots Pack A Punch In Antweight Division”

When Combat Robot Wheels Need To Be Nice And Cheap (But Mostly Cheap)

It started with [CHORL] making a promise to himself regarding constructing a new combat robot: no spending of money on the new robot.

That rule was violated (but only a little) by making his robot’s wheels out of EVA kneeling pads. EVA (Ethylene-Vinyl Acetate) is a closed-cell foam that makes for durable yoga mats, kneeling pads, and products of a similar nature. [CHORL] found a way to turn them into light but serviceable wheels for his robot: the Susquehanna Boxcar.

Nested hole saws create concentric holes. Perfect for wheels.

Here’s how the wheels were made: [CHORL] began with two hole saws. Nesting a smaller hole saw into a larger one by putting both on the same arbor created a saw with two holes, both of which were centered with respect to one another. The only problem was that this hole saw was not actually deep enough to cut completely through the thick foam. Luckily, cutting roughly halfway through on one side, then flipping the sheet over and cutting through from the other side was a good workaround. That took care of turning the thick foam sheet into round wheels.

A 3D-printed part served as a wheel hub as well as gear for the drivetrain. We want to call attention to the clever method of reinforcing the connection between the parts. [CHORL] didn’t want to just glue the geared hub directly to the surface of the foam wheel, because he suspected it might separate under stress. To address this, he designed six slots into the hub, cut matching slots into the foam wheel, and inserted six spline-like reinforcements in the form of some ABS strips he had on hand. Gluing it all together with E-6000 and leaving it to cure overnight under a weight resulted in a geared wheel assembly that [CHORL] judged to be about as round and rigid as a wheel should be, so the robot had a solution for nice light wheels that were, above all, cheap!

Lots of robots need wheels, and unsurprisingly, DIY solutions are common projects. [CHORL]’s approach here looks pretty scalable, as long as one can cut some accurate holes.

Interested in knowing more about the robot these wheels are destined for? [CHORL]’s still working on the Susquehanna Boxcar, but it’s almost done, and you can read a bit more about it (and see a few more pictures) here.

An image of Kitten Mittens and its 3lb counterpart

Why Make A Combat Robot That Walks?

If you watch it on TV or see clips on YouTube, you’ll notice that most combat robots have wheels, which would make sense. They are simple, work well, and if designed right they can take a bit of a beating. So why did [Luke] design his 12-pound bot with no wheels, or any locomotion system for that matter? You can find out more about this peculiar bot in his build report with more than 130 images.

[Luke’s] bot, called Kitten Mittens, is a gyro walker combat robot. This means that instead of traditional tank treads or wheels to move about, [Luke] navigates by angling his bot’s weapon and using the angular momentum to lift up one side of the bot to “walk” forward. Watch the video after the break to see it in action. While this does leave Kitten Mittens much slower and less agile than competitors, it gives one massive leg up; weight. Kitten Mittens fights in the 12-pound combat robotics weight class, but most leagues have weight bonuses for bots that have no wheels or use otherwise nontraditional locomotion. Where [Luke] competes, the Norwalk Havoc Robot League, this means that his bot can be up to 6 pounds heavier than the other competitors!

A 3D-printed prototype of Kitten Mittens' weapon
A printed prototype of the weapon, showing off the integrated hub motor.

So how did [Luke] take advantage of that extra 6 pounds? The biggest thing was the weapon. It is made of 3/4-inch S7 tool steel and has a custom hub motor integrated into the center, bringing its rotating weight to 5.5 pounds. In addition to thickness, the added weight allowance permitted a larger spinning diameter so that Kitten Mittens could hit opponents before they hit him.

[Luke] is not new to the world of combat robotics, and knew it would take more than just a big weapon to win. Part of the extra weight budget was also used to beef up his armor and internal structure of the bot, so that hits from opponents would just bounce him around the cage harmlessly. This even included custom bent titanium guards surrounding the weapon, to help in self-righting.

When it first debuted in February of 2021, Kitten Mittens was a smashing success! It went 4-0 in the 12lb weight class at NHRL, winning the $1,000 prize and earning its spots in the annual finals, where [Luke] will compete against other finalists from the rest of the season for a chance to win the $12,000 first-place prize.

Bots that walk, shuffle, or crawl are becoming more of a trend lately in all weight classes. Even Overhaul, a 250-pound bot, has been given a new set of feet to shuffle around on. You can read more about this interesting concept here.

Continue reading “Why Make A Combat Robot That Walks?”

Raspberry Pi Zero Takes The Wheel In Miniature Fighting Robot

Looking to capitalize on his familiarity with the Raspberry Pi, [Sebastian Zen Tatum] decided to put the diminutive Pi Zero at the heart of his “antweight” fighting robot, $hmoney. While it sounds like there were a few bumps in the road early on, the tuxedoed bot took home awards from the recent Houston Mayhem 2021 competition, proving the year of Linux on the battle bot is truly upon us.

Compared to using traditional hobby-grade RC hardware, [Sebastian] says using the Pi represented a considerable cost savings. With Python and evdev, he was able to take input from a commercial Bluetooth game controller and translate it into commands for the GPIO-connected motor controllers. For younger competitors especially, this more familiar interface can be seen as an advantage over the classic RC transmitter.

A L298N board handles the two N20 gear motors that provide locomotion, while a Tarot TL300G ESC is responsible for spinning up the brushless motor attached to the “bow tie” spinner in the front. Add in a Turnigy 500mAh 3S battery pack, and you’ve got a compact and straightforward electronics package to nestle into the robot’s 3D printed chassis.

In a Reddit thread about $hmoney, [Sebastian] goes over some of the lessons his team has learned from competing with their one pound Linux bot. An overly ambitious armor design cost them big at an event in Oklahoma, but a tweaked chassis ended up making them much more competitive.

There was also a disappointing loss that the team believes was due to somebody in the audience attempting to pair their phone with the bot’s Pi Zero during the heat of battle, knocking out controls and leaving them dead in the water. Hopefully some improved software can patch that vulnerability before their next bout, especially since everyone that reads Hackaday now knows about it…

While battles between these small-scale bots might not have the same fire and fury of the televised matches, they’re an excellent way to get the next generation of hackers and engineers excited about building their own hardware. We wish [Sebastian] and $hmoney the best of luck, and look forward to hearing more of their war stories in the future.

See The Damage 250-Pound Combat Robots Get

Combat robots have been a thing for a while, but we don’t normally get a close look at the end results of the sort of damage they can both take and deal out. [Raymond Ma] spent time helping out with season four of BattleBots and wrote about the experience, as well as showed several pictures of the kind of damage 250-pound robots can inflict upon each other. We’ve embedded a few of them here, but we encourage you to read [Raymond]’s writeup and see the rest for yourself.

The filming for a season of BattleBots is done in a relatively short amount of time, which means the pacing and repair work tends to be more fast and furious than slow and thoughtful. [Raymond] says that it isn’t uncommon for bots, near the end of filming, to be held together with last-minute welds, wrong-sized parts, and sets of firmly-crossed fingers. This isn’t because the bots themselves are poorly designed or made; it’s because they can get absolutely wrecked by the forces at play.

Continue reading “See The Damage 250-Pound Combat Robots Get”