business card pcbs

Creative PCB Business Cards Are Sure To Make An Impression

Business cards are a simple way to share contact information, but a memorable design can make them stand out. [Jeremy Cook] has been experimenting with adding artistic finishes to PCBs, and has recently applied what he’s learned to make some unique business cards. His write-up consolidates some great resources to get you started in making your own PCB business cards, as well as PCB art in general

To make his cards stand out, he designed them to serve as functional tools beyond sharing contact information. He created two designs: one incorporates an LED and a coin cell battery holder, while the other includes drafting tools, such as a ruler, circle stencils, and a simplified protractor.

While the classic PCB solder mask is green, many board houses now offer alternative finishes and colors to enhance designs. He tested and compared the offerings from various manufacturers, highlighting the importance of researching fabrication options early, as different providers offer a variety of finishes. His creative approach shines in details like using through-hole pads as eyes in a robot illustration, making them stand out against a halftone dot pattern.

If you’re looking for more inspiration, be sure to check out the winners of our 2024 Business Card Challenge.

pinout leaf

Pinoutleaf: Simplifying Pinout References

We all appreciate clear easy-to-read reference materials. In that pursuit [Andreas] over at Splitbrain sent in his latest project, Pinoutleaf. This useful web app simplifies the creation of clean, professional board pinout reference images.

The app uses YAML or JSON configuration files to define the board, including photos for the front and back, the number and spacing of pins, and their names and attributes.For example, you can designate pin 3 as GPIO3 or A3, and the app will color-code these layers accordingly. The tool is designed to align with the standard 0.1″ pin spacing commonly used in breadboards. One clever feature is the automatic mirroring of labels for the rear photo, a lifesaver when you need to reverse-mount a board. Once your board is configured, Pinoutleaf generates an SVG image that you can download or print to slide over or under the pin headers, keeping your reference key easily accessible.

Visit the GitHub page to explore the tool’s features, including its Command-Line Interface for batch-generating pinouts for multiple boards. Creating clear documentation is challenging, so we love seeing projects like Pinoutleaf that make it easier to do it well.

EclairM0

EclairM0, The Pocket Notepad

Roughly the size of a Tic Tac container, this project packs a punch in a compact package. [Matt] sent in this beautifully documented pocket device that brings back great memories of texting on early cellphones.

The EclairM0’s firmware is written in TinyGo, a language he hadn’t used before but found perfect for a microcontroller project where storage space is tight. The 14-button input mimics early phone keypads, using multi-tapping and combo key presses to offer various functions. The small SSD1306 OLED display is another highlight. Building on an earlier CircuitPython project, [Matt] optimized the screen’s performance, speeding up its response time for a snappy user experience. The battery picked was only 3 mm thick, however the protection circuity on the battery added another 2 mm so he moved that protection circuity to the main PCB itself to keep it as thin as initially planned.

Weighing just 15 grams, this lightweight device runs on a SAMD21 microcontroller, which supports USB host functionality. This allows the EclairM0 to act as a keyboard, mouse, or even USB peripherals. Housed in a 3D-printed case, the entire project is open-source, with design and firmware files available on GitHub.

We love small handheld projects around here and this well-documented, fun pocket device is no exception, if you want your own he has a page dedicated to helping you build a EclairM0.

Continue reading “EclairM0, The Pocket Notepad”

mohmmeter

The Mohmmeter: A Steampunk Multimeter

[Agatha] sent us this stunning multimeter she built as a gift for her mom. Dubbed the Mohmmeter — a playful nod to its ohmmeter function and her mom — this project combines technical ingenuity with heartfelt craftsmanship.

brass nameplates

At its core, a Raspberry Pi Pico microcontroller reads the selector knob, controls relays, and lights up LEDs on the front panel to show the meter’s active range. The Mohmmeter offers two main measurement modes, each with two sub-ranges for greater precision across a wide spectrum.

She also included circuitry protections against reverse polarity and over-voltage, ensuring durability. There was also a great deal of effort put into ensuring it was accurate, as the device was put though its paces using a calibrated meter as reference to ensure the final product was as useful as it was beautiful.

The enclosure is a work of art, crafted from colorful wooden panels meticulously jointed together. Stamped brass plates label the meter’s ranges and functions, adding a steampunk flair. This thoughtful design reflects her dedication to creating something truly special.

Want to build a meter for mom, but she’s more of the goth type? The blacked-out Hydameter might be more here style.

BGA soldering

Making A One-Of-A-Kind Lime2 SBC

Upgrading RAM on most computers is often quite a straightforward task: look up the supported modules, purchase them, push a couple of levers, remove the old, and install the new. However, this project submitted by [Mads Chr. Olesen] is anything but a simple.

In this project, he sets out to double the RAM on a Olimex A20-OLinuXino-LIME2 single-board computer. The Lime2 came with 1 GB of RAM soldered to the board, but he knew the A20 processor could support more and wondered if simply swapping RAM chips could double the capacity. He documents the process of selecting the candidate RAM chip for the swap and walks us through how U-Boot determines the amount of memory present in the system.

While your desktop likely has RAM on removable sticks, the RAM here is soldered to the board. Swapping the chip required learning a new skill: BGA soldering, a non-trivial technique to master. Initially, the soldering didn’t go as planned, requiring extra steps to resolve issues. After reworking the soldering, he successfully installed both new chips. The moment of truth arrived—he booted up the LIME2, and it worked! He now owns the only LIME2 with 2 GB of RAM.

Be sure to check out some other BGA soldering projects we’ve featured over the years.

Frankenflair 58: Manual Roots, Advanced Brew

The user interface of things we deal with often makes or breaks our enjoyment of using a device. [Janne] thinks so, he has an espresso machine he enjoys but the default controls were not what he was looking for and so in true hacker fashion he took what was and made it his own.

Continue reading “Frankenflair 58: Manual Roots, Advanced Brew”

Track Your Circuits: A Locomotive PCB Badge

This fun PCB from [Nick Brown] features a miniature railroad implemented with 0805-sized LEDs. With an eye towards designing his own fun interactive PCB badge, the Light-Rail began its journey. He thoroughly documented his process, from shunting various late-night ideas together to tracking down discrepancies between the documentation of a part and the received part.

Continue reading “Track Your Circuits: A Locomotive PCB Badge”