Window Shade Motor

Automated Blinds Opener On The Cheap

We love seeing hacks that involve salvaging parts from what you have on hand to make a new project work, and this project is a great example of that. [Simon], in a quick weekend build, created an automated blinds opener using parts he had available.

The project began with the desire to have his blinds open slowly and silently, gradually letting in more light. To accomplish this, a few key components were needed, including a motor with a gearbox to provide the torque required to actuate the blinds and a magnetic encoder to track their progress. To isolate vibrations and keep the system silent, the motor is mounted using a silicone motor mount that he salvaged from a broken water flosser.

The printed holder for the magnetic encoder is a nice touch.

To mount the motor to the wall near the window, he used some 3D printed parts. A clever combination of surgical silicone tubing and silicone tape attaches the motor to the window blind shaft while limiting vibration transfer, keeping things quiet. [Simon] advises against using magnetic encoders as he did, noting that while he had them on hand and made them work, the magnetic shaft’s misalignment with the encoders makes it a less-than-ideal approach. Nevertheless, he got it working.

Automating blinds is a fairly common project around these parts, made all the more accessible with clever 3D printed mechanisms. We’ve even seen variations that can be used in rentals, dorms, and other places were permanent modifications need to be avoided.

Aquassist fish feeder

2025 Pet Hacks Contest: Aquassist Fish Feeder

This project submitted to the 2025 Pet Hacks Contest brings a bit of IoT to your finned friends. Aquassist is a fish feeder that is primarily 3D printed only requiring a servo and a microcontroller to give you remote control of feeding your fish.

The Aquassist consists of just six 3D-printed parts. At its core is an Archimedes screw, a mechanism that ensures consistent portions of fish food are dispensed into the fish tank. A small hopper on top holds the food, and to minimize the part count, all 3D-printed components are designed to be glued together.

The brains of the operation take place in a Wemos D1 mini, a compact ESP8266 board programed using the Arduino IDE. The feeding mechanism relies on an SG90 continuous rotation servo, which rotates the Archimedes screw to dispense food. Unlike standard servos, this model offers ample torque in a small package and can rotate continuously without hitting an angular limit.

The Aquassist is controlled via a web-based application accessible from any device. The D1 Mini connects to Firebase to check the feeding schedule or detect if the “Feed Now” button has been pressed. Users can set feeding times or trigger an immediate feeding through the app’s intuitive interface. Check out a video below to see the Aquassist in action, and check our our other entries into the 2025 Pet Hacks Contest.

Continue reading “2025 Pet Hacks Contest: Aquassist Fish Feeder”

flipper zero uv sensor

A UV Meter For The Flipper Zero

We all know UV radiation for its contributions to getting sunburned after a long day outside, but were you aware there are several types different types of UV rays at play? [Michael] has come up with a Flipper Zero add on board and app to measure these three types of radiation, and explained some of the nuances he learned about measuring UV along the way.

At the heart of this project is an AS7331 sensor, it can measure the UV-A, UV-B, and UV-C radiation values that the Flipper Zero reads via I2C. While first using this chip he realized to read these values is more complex than just querying the right register, and by the end of this project he’d written his own AS7331 library to help retrieve these values. There was also a some experimenting with different GUI designs for the app, the Flipper Zero screen is only 128x64px and he had a lot of data to display. One feature we really enjoyed was the addition of the wiring guide to the app, if you install this Flipper Zero app and have just the AS7331 sensor on hand you’ll know how to hook it up. However if you want he also has provided the design files for a PCB that just plugs into the top of the Flipper Zero.

Head over to his site to check out all the details of this Flipper Zero project, and to learn more about the different types of UV radiation. Also be sure to let us know about any of your Flipper Zero projects.

Dollar bill validator

Reading The Color Of Money

Ever wondered what happens when you insert a bill into a vending machine? [Janne] is back with his latest project: reverse engineering a banknote validator. Curious about how these common devices work, he searched for information but found few resources explaining their operation.

To learn more, [Janne] explored the security features that protect banknotes from counterfeiting. These can include microprinting, UV and IR inks, holograms, color-shifting coatings, watermarks, magnetic stripes, and specialty paper. These features not only deter fraud but also enable validators to quickly verify a bill’s authenticity.

Continue reading “Reading The Color Of Money”

boxie player

Boxie – A Gameboy-Esque Audio Player

This little audiobook player is a stellar example of the learning process behind a multifaceted project blending mechanical, electrical, and software design. [Mario] designed this audiobook player, dubbed Boxie, for his 3-year-old son to replace the often-used but flawed Toniebox.

The inspiration for Boxie was the Toniebox, a kid-friendly audiobook player. While functional, the Toniebox had drawbacks: it required internet connectivity, limited media selection, and had unreliable controls. Enter Boxie, a custom-built, standalone audiobook player free from web services, designed to address these issues with superior audio quality and toddler-friendly controls.

Boxie’s media is stored on microSD cards inserted into a slot on the device. To make this manageable for a toddler, he designed a PCB with a standard microSD card interface, ensuring easy swapping of audiobooks. The enclosure, crafted via 3D printing, is durable and compact, tailored for small hands.

Continue reading “Boxie – A Gameboy-Esque Audio Player”

business card pcbs

Creative PCB Business Cards Are Sure To Make An Impression

Business cards are a simple way to share contact information, but a memorable design can make them stand out. [Jeremy Cook] has been experimenting with adding artistic finishes to PCBs, and has recently applied what he’s learned to make some unique business cards. His write-up consolidates some great resources to get you started in making your own PCB business cards, as well as PCB art in general

To make his cards stand out, he designed them to serve as functional tools beyond sharing contact information. He created two designs: one incorporates an LED and a coin cell battery holder, while the other includes drafting tools, such as a ruler, circle stencils, and a simplified protractor.

While the classic PCB solder mask is green, many board houses now offer alternative finishes and colors to enhance designs. He tested and compared the offerings from various manufacturers, highlighting the importance of researching fabrication options early, as different providers offer a variety of finishes. His creative approach shines in details like using through-hole pads as eyes in a robot illustration, making them stand out against a halftone dot pattern.

If you’re looking for more inspiration, be sure to check out the winners of our 2024 Business Card Challenge.

pinout leaf

Pinoutleaf: Simplifying Pinout References

We all appreciate clear easy-to-read reference materials. In that pursuit [Andreas] over at Splitbrain sent in his latest project, Pinoutleaf. This useful web app simplifies the creation of clean, professional board pinout reference images.

The app uses YAML or JSON configuration files to define the board, including photos for the front and back, the number and spacing of pins, and their names and attributes.For example, you can designate pin 3 as GPIO3 or A3, and the app will color-code these layers accordingly. The tool is designed to align with the standard 0.1″ pin spacing commonly used in breadboards. One clever feature is the automatic mirroring of labels for the rear photo, a lifesaver when you need to reverse-mount a board. Once your board is configured, Pinoutleaf generates an SVG image that you can download or print to slide over or under the pin headers, keeping your reference key easily accessible.

Visit the GitHub page to explore the tool’s features, including its Command-Line Interface for batch-generating pinouts for multiple boards. Creating clear documentation is challenging, so we love seeing projects like Pinoutleaf that make it easier to do it well.