The Guinness Brewery Invented One Of Science’s Most Important Statistical Tools

The Guinness brewery has a long history of innovation, but did you know that it was the birthplace of the t-test? A t-test is usually what underpins a declaration of results being “statistically significant”. Scientific American has a fascinating article all about how the Guinness brewery (and one experimental brewer in particular) brought it into being, with ramifications far beyond that of brewing better beer.

William Sealy Gosset (aka ‘Student’), self-trained statistician. [source: user Wujaszek, wikipedia]
Head brewer William Sealy Gosset developed the technique in the early 1900s as a way to more effectively monitor and control the quality of stout beer. At Guinness, Gosset and other brilliant researchers measured everything they could in their quest to optimize and refine large-scale brewing, but there was a repeated problem. Time and again, existing techniques of analysis were simply not applicable to their gathered data, because sample sizes were too small to work with.

While the concept of statistical significance was not new at the time, Gosset’s significant contribution was finding a way to effectively and economically interpret data in the face of small sample sizes. That contribution was the t-test; a practical and logical approach to dealing with uncertainty.

As mentioned, t-testing had ramifications and applications far beyond that of brewing beer. The basic question of whether to consider one population of results significantly different from another population of results is one that underlies nearly all purposeful scientific inquiry. (If you’re unclear on how exactly the t-test is applied and how it is meaningful, the article in the first link walks through some excellent and practical examples.)

Dublin’s Guinness brewery has a rich heritage of innovation so maybe spare them a thought the next time you indulge in statistical inquiry, or in a modern “nitro brew” style beverage. But if you prefer to keep things ultra-classic, there’s always beer from 1574, Dublin castle-style.

Making Beer Like It’s 1574, For Science And Heritage

Are you interested in the history of beer, food science, or just a fan of gathering “um, actually” details about things? Well you’re in for a treat because FoodCult (exploring Food, Culture, and Identity in early modern Ireland) has a fantastic exhibition showcasing their recreation of beer last brewed in the sixteenth century by putting serious scientific work into it, and learning plenty in the process.

A typical historical beer of middling strength was around 5% alcohol by volume, similar to a modern-day lager.

The recipes, equipment and techniques are straight from what was used at Dublin Castle in the late 1500s. This process yielded very interesting insights about what beer back then was really like, how strong it was, and what was involved in the whole process.

Documentation from the era also provides cultural insight. Beer was often used to as payment and provided a significant amount of dietary energy. Dublin Castle, by the way, consumed some 26,000 gallons per year.

In many ways, beer from back then would be pretty familiar today, but there are differences as well. Chief among them are the ingredients.

While the ingredients themselves are unsurprising in nature, it is in fact impossible to 100% recreate the beer from 1574 for a simple reason: these ingredients no longer exist as they did back then. Nevertheless, the team did an inspired job of getting as close as possible to the historical versions of barley, oats, hops, yeast, and even the water. Continue reading “Making Beer Like It’s 1574, For Science And Heritage”

The Science Behind The Majesty Of Dancing Raisins

Have you ever thrown a handful of raisins into a tub of sparkling water? Or peanuts into beer? It seems like an altogether strange thing to do, but if you’ve tried it, you’ll have seen the way the raisins dance and tumble in the fluid. As it turns out, there’s some really interesting science at play when you dive into the mechanics of it all. [Saverio Spagnolie] did just that, and even went as far as publishing a paper on the topic.

The fundamental mechanism behind the dancing raisins is down to the bubbles in sparkling water. When dropped into the fluid, bubbles form on the raisins and attach to them, giving them additional buoyancy.  They then float up, with some of the bubbles shedding or popping on the way, others doing so at the fluid surface. This then causes the raisins to lose buoyancy, rotate, flop around, and generally dance for our amusement.

[Saverio] didn’t just accept things at face value though, and started taking measurements. He used 3D-printed models to examine bubble formation and the forces involved. Along with other scientists, models were developed to explore bubble formation, shedding, and the dynamics of raisin movement. If you don’t have time to dive into the paper, [Saverio] does a great job of explaining it in a Twitter thread (Nitter) in an accessible fashion.

It’s a great example of cheap kitchen science that can teach you all kinds of incredible physics if you just care to look. Video after the break.

Continue reading “The Science Behind The Majesty Of Dancing Raisins”

Beautiful lamp made from recycled can

Another Way To Recycle Those Empty Beverage Cans

Do you ever sit around thinking of ways to repurpose things in your house? Well [BevCanTech] found a way to recycle some of his empty beverage cans by turning them into homemade wire.

Beautiful, decorative, and functional lamp made from soda can. Also showing the positive and negative voltage terminals.

The premise is simple. He cut 2 mm thick strips of wire from the beverage can along its circumference, creating a thin, long “wire” spool. He sanded the ends of each strip to crimp pieces of his homemade wire together. He found he could get about four meters from a standard-sized beverage can, probably roughly 12 oz, as he unraveled the can. He then used crimp connectors to connect his homemade wires to the battery terminals and also to the end of a flashlight. He used a red cap from another can as a pseudo light diffuser and lampshade, creating a pretty cool, almost lava lamp-like glow.

Maybe the meat of this project won’t be as filling as your Thanksgiving meal, but hopefully, it can serve as a bit of inspiration for your next freeform circuit design. Though you’ll probably want to smooth those sharp edges along your homemade wire.

Centaur Costume Features Drinks Cooler And Walking Legs

Let’s say it’s Halloween, and you’re a big fan of centaurs. At the same time, you want to be easily able to store your drinks on ice and always have them to hand. Well, this costume from [David Yakos] might be the one for you.

Construction is simple. Two small bike wheels were fitted to the cooler using bits of a broken chair, and the other end of the cooler is simply fitted around the wearer’s waist with a strap.

The rear centaur legs are carved out of foam board, and attached to the rear wheels with a bolt through the spokes. The top of each leg is attached to a rod, which slides into the frame holding the wheels on. It keeps the top of the legs roughly where they should be but lets them move, allowing the legs to “walk” as the wheels rotate.

It’s not exactly an advanced build, but we simply love the idea of costumes that keep drinks cold all night. Hiding the cooler as a centaur’s body is really just the icing on the cake. Of course, if you’ve got your own costume design for keeping your beverages chilled and frosty, do let us know. Video after the break.

Continue reading “Centaur Costume Features Drinks Cooler And Walking Legs”

Alexa, Bring Me A Beer!

Voice controlled home assistants are the wonder of our age, once you’ve made peace with the privacy concerns of sharing the intimacies of your life with a data centre owned by a massive corporation, anyway. They provide a taste of how the future was supposed to be in those optimistic predictions of decades past: Alexa and Siri can crack jokes, control your lights, answer questions, tell you the news, and so much more.

But for all their electronic conversational perfection, your electronic pals can’t satisfy your most fundamental needs and bring you a beer. This is something [luisengineering] has fixed, an he’s provided the appropriate answer to the question “Alexa: bring mir ein bier!“. The video which we’ve also put below the break is in German with YouTube’s automatic closed captions if you want them, but we think you’ll be able to get the point of it if not all his jokes without needing to learn to speak a bit of Deutsch.

As he develops his beer-delivery system we begin to appreciate that what might seem to be a relatively straightforward task is anything but. He takes an off-the-shelf robot and gives it a beer-bottle grabber and ice hopper, but the path from fridge to sofa still needs a little work. The eventual solution involves a lot of trial and error, and a black line on the floor for the ‘bot to follow. Finally, his electronic friend can bring him a beer!

We like [Luis]’s entertaining presentational style, and the use of props as microphone stands. We’ll be keeping an eye out for what he does next, and you should too. Meanwhile it may not surprise you that this is not the first beer-delivery ‘bot we’ve brought you.

Continue reading “Alexa, Bring Me A Beer!”

Over-Engineered Bottle Opener Takes The Drudgery Out Of Drinking

Some projects take but a single glance for you to know what inspired them in the first place. For this over-engineered robotic bottle opener, the obvious influence was a combination of abundant free time and beer. Plenty of beer.

Of course there are many ways to pop the top on a tall cold one, depending on the occasion. [Matt McCoy] and his cohorts selected the “high-impulse” method, which when not performed by a robot is often accomplished by resting the edge of the cap on a countertop and slapping the bottle down with the palm of one’s hand. This magnificently pointless machine does the same thing, except with style.

The bottle is placed in a cradle which grips it, gently but firmly, and presents it to the opening mechanism in a wholly unnecessary motion-control ballet. Once in place, a lead screw moves a carriage down, simultaneously storing potential energy in a bundle of elastic surgical tubing while tripping a pawl on the edge of the cap. A lever trips at the bottom of the carriage’s travel, sending the pawl flying upward to liberate the libation, giving the robot a well-deserved and sudsy showers. Behold the wonderful interplay of 190 custom parts — and beer — in the video below.

Hats off to [Matt] et al for their tireless efforts on behalf of beleaguered beer-openers everywhere. This seems like the perfect accessory to go along with a game of mind-controlled beer pong.

Continue reading “Over-Engineered Bottle Opener Takes The Drudgery Out Of Drinking”