Robot Control Ties RC Receiver To Motor Controller

[Andrey Nechypurenko] has posted the second part of his robotics ground vehicle design guide. In his first post [Andrey] detailed the mechanical design decisions he faced. [Andrey] now begins covering the electrical components, starting with manual control using a standard radio control system. To accomplish this an RC system was used with an MD22 h-bridge driver and a picoUPS.

The MD22 is a neat motor control board which can take the PWM signals from the radio controller and use this to drive the DC motors. Optionally it can also use an I2C interface, giving a nice migration path to integrate with a microcontroller. Until that happens this can’t really be called a robot — its more of an RC vehicle. But the iterative design and build process he’s using is a good one!

The picoUPS provides on-board battery charging. Due to its UPS heritage it also allows the vehicle to be powered from an external supply, which has proved useful during development. Finally, a 5v regulator was required to supply the on-board digital logic. [Andrey] wanted a quick drop in solution with a budget large enough to allow for future expansion and went with the Pololu D15V35F5S3 which can supply 3.5 amps in a small and easy to use module.

After breadboarding the system [Andrey] fabricated a PCB to integrate all the components. The next step is to add sensors and and embedded computer to the platform.

Continue reading “Robot Control Ties RC Receiver To Motor Controller”

Fast ADC Uses Old School Scope Hack For 48 MSPS

[Carlos] needed an ADC with a 50 nanosecond sample period for his laser lab, that’s 20Msps! (20 million samples a second). While in recent years, commodity ADCs reaching into the low GSPS have become available, integrated acquisition systems are still somewhat expensive. So [Carlos] decided to do what every good hacker does, and built his own solution. His project post pretty much just links to a whitepaper he wrote (PDF) so we’ll try and boil it down for you:

In order to simplify development [Carlos] borrowed a technique commonly used in the first era of digital oscilloscopes, Equivalent Sampling Time.

est

The figure to the right is from the TDS460 manual. While it may seem counter intuitive to those only familiar with modern scopes, the TDS460 achieved a 400MHz bandwidth using a 100MSPS ADC. In order to achieve this the scope acquires a single trace in multiple cycles, each time offsetting the acquisitions as shown and combining the result.

In this way, early digital scope developers could sidestep the limitations of the available ADCs to achieve a higher effective bandwidth. However there is of course one catch: the technique only works for periodic signals.

This was fine for [Carlos] who implemented a technique on a Cypress PSoC 4, which provides analog FPGA-like functionality. By offsetting the ADC trigger he has able to achieve an EST of 48MHz using a ADC sampling at 1MHz. If you want a little help getting into PSOC 4 yourself, check out the guide that [Bil Herd] made.

Neat hack [Carlos] and we hope to hear more about your laser lab in the future.

Dewalt Radio Repair

We’re suckers for repair videos and this Dewalt worksite radio repair (YouTube Link) from Hackaday alum [Todd Harrison] is no exception. Like a detective story, we’re always trying to guess who did it.

In his first video [Todd] traced the issue down to a faulty 6 volt regulator which was pushing out 8 volts. He fixed that by hacking a LM317 into the circuit to replace the original non-adjustable part. That helped but after a few days the radio failed again. So here he traced out the voltages to find the second culprit. Along the way, we get to see some of the nicer features of his Fluke 87 and 289 meters. As well as puzzling over the some of the design decisions in the radios construction, before identifying the final issue.

We won’t spoil the surprise, but find out how Todd solves this riddle, wrapped in a mystery, inside an enigma in the video below!

Continue reading “Dewalt Radio Repair”

The Best NiMh Charger?

[Paul Allen] has been working on the latest iteration of his NiMh battery charger and it looks amazing!

We’ve covered [Paul Allen]s awesome hacks and tutorials before, but never this project. What makes his charger so special is it’s ability to monitor and log every aspect of the charging process. Not only does it have a SD card for data logging, but it also interfaces with a Windows application for real-time monitoring as well as analysis and visualization of the charging process (Linux users don’t fret it has a serial interface too).

[Paul] doesn’t say if he plans to open hardware or kickstart the charger, but some of his older posts give us a quick peak at the gerbers. Let’s hope this awesome project makes its way into the wild soon, and hopefully we’ll be able to try it for ourselves and see if it lives up to its name.

Decapping The CC2630 And CC2650

[Jelmer] got curious about the TI CC26XX wireless MCUs and did a little decapping.

TI sells four different models of their CC26XX wireless MCUs. Three support one of the following: RF4CE, Zigbee/6LoWPAN, and Bluetooth and a further model which supports all protocols. Each IC has the same baseline specification: 128Kb Flash, 20Kb RAM and 15 GPIOs. cc26xx_nitric[Jelmer] was curious to know if the price difference was all in the software. And in order to verify this decided that decapping was the only thing to do!

We’ve covered decapping using Nitric acid before, as well as lower tech techniques. Luckily [Jelmer] had access to Nitric acid and a fume hood, not the easiest items to get hold of outside of a research lab (checkout the video of the IC bubbling away below). [Jelmer] got some great die shots under an optical microscope and was able to confirm that the die markings are identical. This opens the door to future hacks, which might allow the cheaper models to be re-flashed, expanding their capabilities.

Continue reading “Decapping The CC2630 And CC2650”

Intense Brushless DC Stage Brings More E-Bike Power

[ZombieSS] wrote in to share the latest iteration of his new open hardware Brushless DC motor high power output stage posted on the Endless-sphere forums. The thread is a gold mine of useful information on designing, building and debugging high power electronics and the whole thing is worth reading. This includes the story of issues he faced with common mode noise picked up by the probe leads on his Rigol, which sidetracked the project for a while.

ebikeWe’ve covered various ebike hacks before, but the guys at endless sphere appear to be developing a number of solid open hardware designs in this area. This includes the Lebowski controller which [ZombieSS] used in conjunction with his design.

He has installed the controller and output stage on his electric bike, and you can see one of the first test runs in the video below. We look forward to hearing more from the awesome hackers at Endless sphere!

Continue reading “Intense Brushless DC Stage Brings More E-Bike Power”

Using A Voltage Regulator As A Constant Current Source

[Afroman] contacted us to share his new video on the LM317. The humble LM317 adjustable voltage regulator is everywhere. From wifi routers, to high spec lab equipment. Given a noisy input and a variable load, a voltage regulator will give a nice clean, stable output voltage. We’ve covered the basic operation and usage of the LM317 many times. But even the most common of parts can be used in new and interesting ways.

In his video [Afroman] describes how the LM317 can be used to regulate current rather than voltage to provide a constant current source under varying load. This can useful for a number of applications including driving LEDs and laser diodes. While this circuit may not be as efficient as an LED driver module or a switching solution the LM317 is cheap and readily available. [Afroman] also describes how the circuit works in detail allowing us to enjoy this ubiquitous part in this slightly unusual application.

Continue reading “Using A Voltage Regulator As A Constant Current Source”