# Science Officer…Scan For Elephants!

If you watch many espionage or terrorism movies set in the present day, there’s usually a scene where some government employee enhances a satellite image to show a clear picture of the main villain’s face. Do modern spy satellites have that kind of resolution? We don’t know, and if we did we couldn’t tell you anyway. But we do know that even with unclassified resolution, scientists are using satellite imagery and machine learning to count things like elephant populations.

When you think about it, it is a hard problem to count wildlife populations in their habitat. First, if you go in person you disturb the target animals. Even a drone is probably going to upset timid wildlife. Then there is the problem with trying to cover a large area and figuring out if the elephant you see today is the same one as one you saw yesterday. If you guess wrong you will either undercount or overcount.

The Oxford scientists counting elephants used the Worldview-3 satellite. It collects up to 680,000 square kilometers every day. You aren’t disturbing any of the observed creatures, and since each shot covers a huge swath of territory, your problem of double counting all but vanishes.

# Dumbo Never Forgets To Fill Your Glass

What do you get if you have a 3D printer, some booze (or any beverage), a pump, and an Arduino? If you are [RobotGeek] you wind up with an elephant that will pour you a shot on demand. The project was inspired by the ShotBot, but we have to admit the elephant sells it.

Conceptually, the device is pretty simple. A pump and a light sensor do all the real work. When you cover the sensor with a shot glass, the pump dispenses liquid. What we found of interest, though, was the process of starting with an elephant model and then modifying it for the purpose at hand. In addition to making it larger, they also cut off the trunk and replaced it with a spout. The steps show Fusion 360, but you could apply the same concepts using your choice of CAD programs.

# The Surface Area To Volume Ratio Or Why Elephants Have Big Ears

There are very few things that are so far reaching across many different disciplines, ranging from biology to engineering, as is the relation of the surface area to the volume of a body. This is not a law, as Newton’s second one, or a theory as Darwin’s evolution theory. But it has consequences in a diverse set of situations. It explains why cells are the size they are, why some animals have a strange morphology, why flour explodes while wheat grains don’t and many other phenomena that we will explore in this article.

# Hackaday Prize Entry: There’s An Elephant In The Room

Elephants and people don’t mix as well as you’d hope. Human-elephant conflict causes deaths of both pachyderms and man alike. Elephants raid crops. Elephants are killed by trains. Obviously, where elephants are is useful knowledge. This is the problem [Neil] is solving for his entry into the Hackaday Prize. His project detects elephants, whether they’re on a railroad, in a field gorging on crops, or… in the room.

[Neil]’s goal is simple – he’s building a distributed elephant detection system that can be deployed at railway crossings, between forests and farmland, and along established elephant trails. This gives [Neil] exactly two problems: detecting elephants, and communicating that information to humans.

To detect elephants, [Neil] is relying on a webcam and Raspberry Pi 3 running OpenCV vision processing. He’ll either be comparing histograms, for faster and less resource intensive image processing, or feature matching. Each detector is equipped with a PIR sensor, so at the very least the Pi won’t be looking for elephants all the time.

Notifying humans of the existence of elephants is the next step of the project, and one that might even be harder than finding the elephants in the first place. [Neil] settled on using ZigBees on each Pi to talk to at least one base station. This base station then sends a message to the local human population over a much longer-range radio link. Networking a bunch of Pis in the middle of the African savanna is a hard problem, but by separating the communication aspect of this project into two radio links, [Neil] has a fairly robust solution.