An Introduction To Series Elastic Actuators For A Robot

Perhaps one of the most interesting YouTube channels to follow right now is [James Bruton’s] channel for XRobots.co.uk — he’s a prop maker, a toy maker — and as his site implies, a robotics guru. Put them altogether and watch him make some of your childhood dream projects come true. He’s currently working on a real-life robot creation of Ultron, and he’s messing around with Series Elastic Actuators right now.

In an earlier part of the project, he built a small robotic arm to demonstrate the motion capture suit he’s going to use to control Ultron (if all goes according to plan he’ll have a walking robot following his every move!). He showed how the basic RC servo motor driven arm works, and how it probably wouldn’t be the best to scale up since it has no external feedback — if he has a full size Ultron robot swinging its arms around, someone could get hurt.

Which led him to designing his own prototype Series Elastic Actuators using an Arduino, potentiometers, some elastics, and a geared DC motor.

Continue reading “An Introduction To Series Elastic Actuators For A Robot”

Shoving A Raspberry Pi Zero Into An Xbox Controller

With the release of the Raspberry Pi Zero last month, we’ve been waiting in excitement to see the first creative hacks to come out, making use of its tiny size; which if you didn’t know, is smaller than a business card. [Terence Eden] hopped to it and made what might be the first Raspberry Pi Zero emulator: inside an Xbox controller.

10-Pi-Cardboard-insulatorThanks to its small size it’s actually a fairly straight forward hack with minimal modification to the controller in order to make it fit. In fact, you only need to remove the memory card holder from the controller and snip one bit of plastic in order to make it fit right in the middle — awesome.

Now it does stick out a bit as you can see in the pictures, but we’re sure it won’t take someone long to make a 3D printed part that snaps into the controller giving it a more stock appearance. Unfortunately since HDMI can’t carry a power source to the Pi, [Terence] is using a micro-USB to power it — but there is enough space inside the controller for a battery pack if you wanted to make it truly portable.

Continue reading “Shoving A Raspberry Pi Zero Into An Xbox Controller”

Office Dog Triangulation Keeps Spot Accounted For

[Matt Reed] works at a pet friendly work-space, where his pooch called [Bean] loves to wander around and disappear. She’s not getting in trouble, but nonetheless, [Matt] worries about her. So he took the creepy stalker route and put a beacon on her collar to track her every move.

He’s using a small BLE beacon that will poll a signal every second, sending out a unique ID code and a RSSI value (Received Signal Strength Indicator). Normally beacons are placed in a stationary location to help people navigate — but this time, it’s on a moving dog.

In order to better understand [Bean’s] location in the office, [Matt] set up three Raspberry Pi’s with Bluetooth adapters around the office. Using Noble, Node.js listens for the RSSI values and triangulates [Bean’s] position, much like a cellphone can be located using different ping times from cellular towers.

Continue reading “Office Dog Triangulation Keeps Spot Accounted For”

This VU Meter Is Built Into The Speaker

Depending on the music you’re listening to, watching a VU meter bounce to the music is always a good time. So why not integrate the VU meter right into the audio source? That’s what [Matikas] did, and it’s pretty fantastic.

He started with a pair of speakers he had and picked up some NeoPixel LED strips. Carefully wrapping the LED strips around the inside circumference of each speaker, the LEDs fit behind the speaker grills, giving it a cool effect when they’re on.

To control the LEDs, he’s using an Arduino Uno (Atmega328p) which measures the audio level in order to modulate the LED output. A bit of software later (shared on GitHub if you’re interested!) and the VU meters were ready for action — check it out!

Continue reading “This VU Meter Is Built Into The Speaker”

Freezing Stuff With Fricken’ Lasers

For almost two decades there has been research that describes a method to freeze material with nothing but a laser. The techniques have only ever been able to work on single nano-crystals in a vacuum, making it less than functional — or practical. Until now, that is.

Researchers at the University of Washington have figured out how to cool a liquid indirectly using an infrared laser. It works by subjecting a special microscopic crystal to the laser. When the laser hits this crystal, the infrared light turns to the visible spectrum, becoming a reddish green light — which happens to be more energetic than infrared. This shift in energy levels is what causes a change in temperature. The energy (in the way of heat) is sucked from the fluid surrounding the crystal, and as such, causes a drop in the temperature of the liquid. Continue reading “Freezing Stuff With Fricken’ Lasers”

Upgrading A 3D Printer With A Leadscrew

Consumer 3D printers have really opened up the floodgates to personal at home fabrication. Even the cheapest of 3D printers will yield functional parts — however the quality of the print varies quite a lot. One of the biggest downfalls to affordable 3D printers is the cost cutting of crucial parts, like the z-Axis. Almost all consumer 3D printers use standard threaded rod for the z-axis, which should really use a leadscrew instead.

Threaded rod is not designed for accurate positioning — it’s primarily designed to be a fastener. You can have issues with backlash, wobble, and they usually aren’t even perfectly straight — not to mention they gunk up easily with dirt and grime. In other words, you’ll never see a threaded rod on a commercial machine.

Continue reading “Upgrading A 3D Printer With A Leadscrew”

Conductive Circuit Board Tattoos: Tech Tats

While hardcore body-hackers are starting to freak us out with embedded circuit boards under their skin, a new more realistic option is becoming available — temporary tech tattoos. They’re basically wearable circuit boards.

Produced by [Chaotic Moon], the team is excited to explore the future of skin-mounted components — connected with conductive ink in the form of a temporary tattoo. And if you’re still thinking why, consider this. If these tattoos can be used as temporary health sensors, packed with different biometric readings, the “tech tat” can be applied when it is needed, in order to monitor specific things.

In one of their test cases, they mount an ATiny85 connected to temperature sensors and an ambient light sensor on the skin. A simple device like this could be used to monitor someone’s vitals after surgery, or could even be used as a fitness tracker. Add a BLE chip, and you’ve got wireless data transfer to your phone or tablet for further data processing.

Continue reading “Conductive Circuit Board Tattoos: Tech Tats”