A Deep Dive Into Molten Bismuth

Bismuth is known for a few things: its low melting point, high density, and psychedelic hopper crystals. A literal deep-dive into any molten metal would be a terrible idea, regardless of low melting point, but [Electron Impressions]’s video on “Why Do Bismuth Crystals Look Like That” may be the most educational eight minutes posted to YouTube in the past week.

The whole video is worth a watch, but since spoilers are the point of these articles, we’ll let you in on the secret: it all comes down to Free Energy. No, not the perpetual motion scam sort of free energy, but the potential that is minimized in any chemical reaction. There’s potential energy to be had in crystal formation, after all, and nature is always (to the extent possible) going to minimize the amount left on the table.

In bismuth crystals– at least when you have a pot slowly cooling at standard temperature and pressure–that means instead of a large version of the rhombahedral crystal you might naively expect if you’ve tried growing salt or sugar crystals in beakers, you get the madman’s maze that actually emerges. The reason for this is that atoms are preferentially deposited onto the vertexes and edges of the growing crystal rather than the face. That tends to lead to more vertexes and edges until you get the fractal spirals that a good bismuth crystal is known for. (It’s not unlike the mechanism by which the dreaded tin whiskers grow, as a matter of fact.)

Bismuth isn’t actually special in this respect; indeed, nothing in this video would not apply to other metals, in the right conditions. It just so happens that “the right conditions” in terms of crystal growth and the cooling of the melt are trivial to achieve when melting Bismuth in a way that they aren’t when melting, say, Aluminum in the back yard. [Electron Impressions] doesn’t mention because he is laser-focused on Bismuth here, but hopper crystals of everything from table salt to gold have been produced in the lab. When cooling goes to quick, it’s “any port in a storm” and atoms slam into solid phase without a care for the crystal structure, and you get fine-grained, polycrystaline solids; when it goes slowly enough, the underlying crystal geometry can dominate. Hopper crystals exist in a weird and delightful middle ground that’s totally worth eight minutes to learn about.

Aside from being easy to grow into delightful crystals, bismuth can also be useful when desoldering, and, oddly enough, making the world’s fastest transistor.

Continue reading “A Deep Dive Into Molten Bismuth”

After Trucking Them Home, Old Solar Panels Keep On Trucking

The fact that there exist in our world flat rocks that make lightning when you point them at the sun is one of the most unappreciated bits of wizardry in this modern age. As hackers, we love all this of techno-wizardry–but some of us abhor paying full price for it. Like cars, one way to get a great discount is to buy used. [Backyard Solar Project] helped a friend analyze some 14-year-old panels to see just how they’d held up over the years, and it was actually better than we might have expected.

The big polycrystalline panels were rated at 235 W when new, and they got 6 of them for the low, low price of “get this junk off my property”. Big panels are a bit of a pain to move, but that’s still a great deal. Especially considering that after cleaning they averaged 180 W, a capacity factor of 77%. Before cleaning 14 years worth of accumulated grime cost about eight watts, on average, an argument for cleaning your panels. Under the same lighting conditions, the modern panel (rated to 200 W) was giving 82% of rated output.

That implies that after 14 years, the panels are still at about 94% of their original factory output, assuming the factory wasn’t being overoptimistic about the numbers to begin with. Still, assuming you can trust the marketing, a half a percent power drop per year isn’t too bad. It’s also believable, since the US National Renewably Energy Laboratory (yes, they have one) has done tests that put that better than the average of 0.75 %/yr. Of course the average American solar panel lives in a hotter climate than [Backyard Solar Project], which helps explain the slower degradation.

Now, we’re not your Dad or your accountant, so we’re not going to tell you if used solar panels are worth the effort. On the one hand, they still work, but on the other hand, the density is quite a bit lower. Just look at that sleek, modern 200 W panel next to the old 235 W unit. If you’re area-limited, you might want to spring for new, or at least the more energy-dense monocrystalline panels that have become standard the last 5 years or so, which aren’t likely to be given away just yet. On the gripping hand, free is free, and most of us are much more constrained by budget than by area. If nothing else, you might have a fence to stick old panels against; the vertical orientation is surprisingly effective at higher latitudes.

Continue reading “After Trucking Them Home, Old Solar Panels Keep On Trucking”

EmuDevz Is Literally A Software Game

The idea of gamifying all the things might have died down now that the current hype is shoving AI into all the things — but you’ve probably never seen it quite like EmuDevz, a game in which you develop an 8-bit emulator by [Rodrigo Alfonso].

There’s a lot of learning you’ll have to do along the way, about programming and how retro systems work, including diving into 6502 assembly code. Why 6502? Well, the emulator you’re working on (it’s partially-written at the start of the game; you need only debug and finish the job) is for a fantasy system called the NEEES “an antique game console released in 1983”. It’s the NEEES and not NES for two reasons. One, Nintendo has lawyers and they really, really know how to use them. Two, by creating a fantasy console that is not-quite-a-Famicom, the goalposts for EmuDevz can be moved a bit closer in.

Continue reading “EmuDevz Is Literally A Software Game”

Standalone CNC Tube Cutter/Notcher Does It With Plasma

Tubes! Not only is the internet a series of them, many projects in the physical world are, too. If you’re building anything from a bicycle to a race cart to and aeroplane, you might find yourself notching and welding metal tubes together. That notching part can be a real time-suck. [Jornt] from HOMEMADE MADNESS (it’s so mad you have to shout the channel name, apparently) thought so when he came up with this 3-axis CNC tube notcher.

If you haven’t worked with chrome-molly or other metal tubing, you may be forgiven for wondering what the big deal is, but it’s pretty simple: to get a solid weld, you need the tubes to meet. Round tubes don’t really want to do that, as a general rule. Imagine the simple case of a T-junction: the base of the T will only meet the crosspiece in a couple of discreet points. To get a solid joint, you have to cut the profile of the crosspiece from the end of the base. Easy enough for a single T, but for all the joins in all the angles of a space-frame? Yeah, some technological assistance would not go amiss.

Which is where [Jornt]’s project comes in. A cheap plasma cutter sits on one axis, to cut the tubes as they move under it. The second axis spins the tube, which is firmly gripped by urethane casters with a neat cam arrangement. The third axis slides the tube back and forth, allowing arbitarily long frame members to be cut, despite the very compact build of the actual machine. It also allows multiple frame members to be cut from a single long length of tubing, reducing setup time and speeding up the overall workflow. Continue reading “Standalone CNC Tube Cutter/Notcher Does It With Plasma”

BlueSCSI: Not Just For Apple

Anyone into retro Macintosh machines has probably heard of BlueSCSI: an RP2040-based adapter that lets solid state flash memory sit on the SCSI bus and pretend to contain hard drives. You might have seen it on an Amiga or an Atari as well, but what about a PC? Once upon a time, higher end PCs did use SCSI, and [TME Retro] happened to have one such. Not a fan of spinning platters of rust, he takes us through using BlueSCSI with a big-blue-based-box.

Naturally if you wish to replicate this, you should check the BlueSCSI docs to see if the SCSI controller in your PC is on their supported hardware list; otherwise, your life is going to be a lot more difficult than what is depicted on [TME Retro]. As is, it’s pretty much the same drop-in experience anyone who has used BlueSCSI on a vintage Macintosh might expect. Since the retro-PC world might not be as familiar with that, [TME Retro] gives a great step-by-step, showing how to set up hard disk image files and an iso to emulate a SCSI CD drive on the SD card that goes into the BlueSCSIv2.

This may not be news to some of you, but as the title of this video suggests, not everyone knows that BlueSCSI works with PCs now, even if it has been in the docs for a while. Of course PCs owners are more likely to be replacing an IDE drive; if you’d rather use a true SSD on that bus, we’ve got you covered.

Continue reading “BlueSCSI: Not Just For Apple”

SLM Co-extruding Hotend Makes Poopless Prints

Everyone loves colourful 3D prints, but nobody loves prime towers, “printer poop” and all the plastic waste associated with most multi-material setups. Over the years, there’s been no shortage of people trying to come up with a better way, and now it’s time for [Roetz] to toss his hat into the ring, with his patent-proof, open-source Roetz-End. You can see it work in the video below.

The Roetz-End is, as you might guess, a hot-end that [Roetz] designed to facilitate directional material printing. He utilizes SLM 3D printing of aluminum to create a four-in-one hotend, where four filaments are input and one filament is output. It’s co-extrusion, but in the hot-end and not the nozzle, as is more often seen. The stream coming out of the hot end is unmixed and has four distinct coloured sections. It’s like making bi-colour filament, but with two more colours, each aligned with one possible direction of travel of the nozzle.

What you get is ‘directional material deposition’: which colour ends up on the outer perimeter depends on how the nozzle is moving, just like with bi-color filaments– though far more reliably. That’s great for making cubes with distinctly-coloured sides, but there’s more to it than that. Printing at an angle can get neighboring filaments to mix; he demonstrates how well this mixing works by producing a gradient at (4:30). The colour gradients and combinations on more complicated prints are delightful.

Is it an MMU replacement? Not as-built. Perhaps with another axis– either turning the hot-end or the bed to control the direction of flow completely, so the colours could mix however you’d like, we could call it such. That’s discussed in the “patent” section of the video, but has not yet been implemented. This technique also isn’t going to replace MMU or multitool setups for people who want to print dissimilar materials for easily-removable supports, but co-extruding materials like PLA and TPU in this device creates the possibility for some interesting composites, as we’ve discussed before.

As for being “patent-proof” — [Roetz] believes that through publishing his work on YouTube and GitHub into the public domain, he has put this out as “prior art” which should block any entity from successfully filing a patent. It worked for Robert A. Heinlein with the waterbed, but that was a long time ago. Time will tell if this is a way to revive open hardware in 3D printing.

It’s certainly a neat idea, and we thank [CityZen] for the tip.

Continue reading “SLM Co-extruding Hotend Makes Poopless Prints”

Your LLM Won’t Stop Lying Any Time Soon

Researchers call it “hallucination”; you might more accurately refer to it as confabulation, hornswaggle, hogwash, or just plain BS. Anyone who has used an LLM has encountered it; some people seem to find it behind every prompt, while others dismiss it as an occasional annoyance, but nobody claims it doesn’t happen. A recent paper by researchers at OpenAI (PDF) tries to drill down a bit deeper into just why that happens, and if anything can be done.

Spoiler alert: not really. Not unless we completely re-think the way we’re training these models, anyway. The analogy used in the conclusion is to an undergraduate in an exam room. Every right answer is going to get a point, but wrong answers aren’t penalized– so why the heck not guess? You might not pass an exam that way going in blind, but if you have studied (i.e., sucked up the entire internet without permission for training data) then you might get a few extra points. For an LLM’s training, like a student’s final grade, every point scored on the exam is a good point. Continue reading “Your LLM Won’t Stop Lying Any Time Soon”