If Not Ethernet…

It is hard to imagine today, but there was a time when there were several competing network technologies. There was Ethernet, of course. But you could also find token ring, DEC Net, EcoNet, and ARCNet. If you’ve never dug into ARCNet, [Retrobytes] has a comprehensive history you can watch that will explain it all.

Like token ring, ARCNet used a token-passing scheme to allow each station on the network to take turns sending data. Unlike token ring and Ethernet, the hardware setup was much less expensive. Along the way, you get a brief history of the Intel 8008 CPU, which, arguably, started the personal computer revolution.

Like most networking products of the day, ARCNet was proprietary. However, by the late 1980s, open standards were the rage, and Ethernet took advantage. Up until Ethernet was able to ride on twisted pairs, however, it was more expensive and less flexible than ARCNet.

The standard used RG-62/U coax and either passive or active hubs in a star configuration. The coax could be up to 2,000 feet away, so very large networks were feasible. It was also possible to share the coax with analog videoconferencing.

Looking back, ARCNet had a lot to recommend it, but we know that Ethernet would win the day. But [Retrobytes] explains what happened and why.

If you missed “old-style Ethernet,” we can show you how it worked. Or, check out EcoNet, which was popular in British schools.

Intel To Ship Quantum Chip

In a world of 32-bit and 64-bit processors, it might surprise you to learn that Intel is releasing a 12-bit chip. Oh, wait, we mean 12-qubit. That makes more sense. Code named Tunnel Falls, the chip uses tiny silicon spin quantum bits, which Intel says are more advantageous than other schemes for encoding qubits. There’s a video about the device below.

It is a “research chip” and will be available to universities that might not be able to produce their own hardware. You probably aren’t going to find them listed on your favorite online reseller. Besides, the chip isn’t going to be usable on a breadboard. It is still going to take a lot of support to get it running.

Intel claims the silicon qubit technology is a million times smaller than other qubit types. The size is on the order of a device transistor — 50 nanometers square — simplifying things and allowing denser devices. In silicon spin qubits, information resides in the up or down spin of a single electron.

Of course, even Intel isn’t suggesting that 12 qubits are enough for a game-changing quantum computer, but you do have to start somewhere. This chip may enable more researchers to test the technology and will undoubtedly help Intel accelerate its research to the next step.

There is a lot of talk that silicon is the way to go for scalable quantum computing. It makes you wonder if there’s anything silicon can’t do? You can access today’s limited quantum computers in the proverbial cloud.

Continue reading “Intel To Ship Quantum Chip”

Clock Project Doesn’t Require A Decision

You decide to build a clock. The first thing you have you determine if it is going to be digital or analog. Or is it? If you build [Ivanek240267]’s clock, you can have both.

The digital portion uses an OLED display. The analog portion contains two rings of smart LEDs. The WiFi configuration is always an issue in projects like this, and this clock also offers options. In addition, the Raspberry Pi Pico-based clock also sets itself via NTP.

You can, of course, compile the WiFi credentials into the code, and assuming you don’t plan on changing networks, that’s fine. But if you’re in a more dynamic situation, the clock can also read its configuration from a memory card.

The analog clock uses colors. The green LEDs represent quarter hours. The blue LEDs are for minutes, while the red ones are full hours. Of course, reading the OLED doesn’t require any special interpretation.

When debugging, the timing doesn’t drive the smart LEDs. That means if you need to work on that part of the code, you won’t be able to count on debugging support.

We’ve mentioned before that digital clocks are all analog, anyway. If you want to use fewer LEDs, you can get by with only five.

Thermal Camera Reviewed

We keep thinking about buying a better thermal camera, as there are plenty of advantages. While [VoltLog’s] review of the Topdon TC002 was interesting though, it has a connector for an iPhone. Even if you aren’t on Android, there is a rumor that Apple may (or may be forced to) change connectors which will make it more difficult to connect. Of course, there will be adapters, and you can get a USB C version of the same camera.

Technically, the camera is pretty typical of other recent cameras in this price range, and they probably all use the same image sensor. The camera provides 256×192 images.

Continue reading “Thermal Camera Reviewed”

Hinged Parts For The 8th Grade Set

I recently agreed to run a 3D printing camp for 8th graders. If you’ve never shared your knowledge with kids, you should. It is a great experience. However, it isn’t without its challenges. One thing I’ve learned: don’t show the kids things that you don’t want them to try to print.

I learned this, of course, the hard way. I have several “flexy”3D prints. You know the kind. Flexy dinosaurs, cats, hedgehogs, and the like. They all have several segments and a little hinge so the segments wobble. The problem is the kids wanted to print their own creations with flexy hinges.

I’ve built a few print-in-place hinges, but not using Tinkercad, the software of choice for the camp. While I was sure it was possible, it seemed daunting to get the class to learn how to do it. Luckily, there’s an easy way to add hinges like this to a Tinkercad design. There was only one problem.

Continue reading “Hinged Parts For The 8th Grade Set”

The Fake Moon Landing Quarantine

We aren’t much into theories denying the moon landing around here, but [Dagomar Degroot], an associate professor at Georgetown University, asserts that the Apollo 11 quarantine efforts were bogus. Realistically, we think today that the chance of infection from the moon, of all places, is low. So claiming it was successful is like paying for a service that prevents elephants from falling through your chimney. Sure, it worked — there hasn’t been a single elephant!

According to [Degroot], the priority was to protect the astronauts and the mission, and most of the engineering money and effort went towards that risk reduction. The — admittedly low — danger of some alien plague wiping out life on Earth wasn’t given the same priority.

Continue reading “The Fake Moon Landing Quarantine”

Clay Makes For DIY Power Source, Just Add Water

[Robert Murray-Smith] starts out showing us some clay formations that house bees. He couldn’t take any of that clay home, but that’s no problem — clay is plentiful, and apparently, you can make a battery with it. Well, perhaps not really a battery. Adding water to zeolite — a clay often used as a filter material — generates heat, and where there’s heat, there can be electricity.

[Robert] uses a salvaged Peltier device, as you find in small electric refrigerators. These solid-state heat pumps usually convert electricity into a temperature differential, but in this case, it is used as a thermocouple, generating electricity from a temperature difference.

The clay used is a very fine aluminosilicate crystal known as zeolite 13X. Once it comes into contact with plain ordinary water, it immediately starts to boil. It’s a neat experiment, and with the Peltier underneath the metal container holding the clay, enough power is produced to spin a small motor. Of course this won’t power anything large, but on the other hand, plenty of things these days don’t take much power. This technique would work with any exothermic reaction of course, but there’s something compelling about the shelf-stability of water and clay.

Beats a potato, we suppose. Batteries don’t have to be difficult to make. It is only hard to make really good ones.

Continue reading “Clay Makes For DIY Power Source, Just Add Water”