This Custom Workbench Will Make You Flip

In a recent video, [SomeSkillStudio] created a tidy tool storage system for their slim garage workbench. We have seen the “five knuckle” 270 degree hinges used here before and knew they’d enable some cool hacks. Here you’ll see how he puts this unique type of hardware to work building a densely packed work surface. For anyone who’s set up shop in a garage that’s somehow also supposed to still regularly host vehicles, you’ll know how important it is to have a place to put everything away and make it easy to do so.

The video has several great tips on making sure everything fits together, something key for anyone reproducing this with their own tool collection. If you have even less space, we have some great past workshop builds from portable, to tiny, to elaborate. Even if you’ve already established a place to work, we have tips on organizing your shop, giving each tool a home in a shadow board or across an infinite grid. Clearly, making a work space is one of our favorite kinds of projects.

Continue reading “This Custom Workbench Will Make You Flip”

Hand reaching for a 3d-printed hinge

One-piece Geared Hinge Can Take The Weight

3D printers have come a long way from cranking out things like bottle openers and coat pegs, and [E. Soderberg]’s Print in Place Geared Hinge is a pretty nifty demonstration of that. This hinge is designed as a print-in-place part, meaning it is 3D printed as a single piece, requiring no assembly. Not only that, but the herringbone gears constrain the sturdy device in a way that helps it support heavy loads.

Of course, hinges — even strong ones — are not particularly hard to find items. They’re available in a mind-boggling array of shapes and sizes. But what’s interesting about this design is that it shows what’s easily within the reach of just about any hobbyist nowadays. Not that long ago, designing and creating an object like this would not have been accessible to most home enthusiasts. Making it without a modern 3D printer would certainly have been a challenge in its own right.

It doesn’t always matter that a comparable (or superior) off-the-shelf part is available; an adequate part that can be created in one’s own workshop has a value all its own. Plus, it’s fun to design and make things, sometimes for their own sake. After all, things like 3D-printed custom switch assemblies would not exist if everyone were satisfied with the ability to just order some Cherry MX switches and call it a day.

Hinge Brings New Meaning To Flexible PCB

It is not a secret that flexible PC boards can bend. But despite the substrate’s flexibility, you can’t really fold them completely over. That bothered [Carl] so he developed a hinge design so that he can fold a board completely in half. You can watch a video showing an example, FlexBox, below.

Normal boards can fold over, but the copper traces can’t tolerate a very tight bend radius. [Carl’s] trick is to make the folding part have no traces at all. Only a small bridge carries traces between the two halves and it is allowed to bend almost like an interconnecting cable.

Continue reading “Hinge Brings New Meaning To Flexible PCB”

Project Egress: The Hinges

A door’s hinges are arguably its most important pieces. After all, a door without hinges is just, well, a wall. Or a bulkhead, if we’re talking about a hingeless hatch on a spacecraft.

And so the assignment for creating hinges for Progress Egress, the celebration of the 50th anniversary of the Apollo 11 landing by creating a replica of the command module hatch, went to [Jimmy DiResta]. The hinges were complex linkages that were designed to not only handle the 225 pound (102 kg) hatch on the launch pad, but to allow extended extravehicular activity (EVA) while en route to the Moon. [Jimmy], a multimedia maker, is just as likely to turn metal as he is to work in wood, and his hinges are a study of 1960s aerospace engineering rendered in ipe, and extremely hard and dense tropical hardwood, and brass.

[Jimmy]’s build started with a full-size 3D-printed model of the hinge, a move that paid off as the prints acted both as templates for machining the wood components and as test jigs to make sure everything would articulate properly. Sheet brass was bent and soldered into the hinge brackets, while brass rod stock was turned on the lathe to simulate the hydraulic cylinder hinge stays of the original. The dark ipe and the brass work really well together, and should go nicely with [Fran Blanche]’s walnut and brass latch on the assembled hatch.

With [Adam Savage]’s final assembly of all the parts scheduled for Thursday the 18th, we’re down to the wire on this celebration of both Apollo and the maker movement that was at least in part born from it.

Note: the assembly started at 11:00 Eastern time, and there’s a live stream at https://airandspace.si.edu/events/project-egress-build.

Continue reading “Project Egress: The Hinges”

This Beer Keg Is A Side Car

Bikes are a great way to get around. They’re cheap compared to cars and can be faster through city traffic, and you can get some exercise at the same time. The one downside to them is that the storage capacity is often extremely limited. Your choices are various bags strapped to the bike (or yourself), a trailer, or perhaps this bicycle side car made from a beer keg.

Sidecars are traditionally the realm of motorcycles, not bicycles, but this particular bike isn’t without a few tricks. It has an electric motor to help assist the rider when pedaling. With this platform [Laura Kampf] has a lot of potential. She got to work cutting the beer keg to act as the actual side car, making a hinged door to cover the opening. From there, she fabricated a custom mount for the side car that has a custom hinge, allowing the side car to stay on the road when the bike leans for corners.

For those unfamiliar, [Laura] is a master welder with a shop located in Germany. We’ve seen some of her work here before, and she also just released a video showing off all of her projects for the last year. If you’re an aspiring welder, or just like watching a master show off her craft, be sure to check those out or go straight to the video below.

Continue reading “This Beer Keg Is A Side Car”

Living Hinges At The Next Level

First of all, a living hinge is not a biological entity nor does it move on its own. Think of the top of a Tic Tac container where the lid and the cover are a single piece, and the thin plastic holding them together flexes to allow you to reach the candies disguised as mints. [Xiaoyu “Rayne” Zheng] at Virginia Tech designed a method of multimaterial programmable additive manufacturing which is fancy-ese for printing with more than one type of material.

The process works under the premise of printing a 3D latticework, similar to the “FILL” function of a consumer printer. Each segment of material is determined by the software and mixed on the spot by the printer and cured before moving onto the next segment. Like building a bridge one beam at a time, if that bridge were meant for tardigrades and many beams were fabricated each minute. Mixing up each segment as needed means that a different recipe results in a different rigidity, so it is possible to make a robotic leg with stiff “bones” and flexible “joints.”

We love printing in different materials, even if it is only one medium at a time. Printing in metal is useful and could be consumer level soon, but you can print in chocolate right now.

Via Phys.org. Thank you again for the tip, [Qes].

Parametric Hinges With Tinkercad

Simple tools are great, but sometimes it is most convenient to just use something easy, and since it gets the work done, you don’t try out some of the other features. Tinkercad is a great example of that kind of program. It is actually quite powerful, but many people just use it in the simplest way possible. [Chuck] noticed a video about making a 3D-printed hinge using Tinkercad and in that video [Nerys] manually placed a bunch of hinges using cut and paste along with the arrow keys for positioning. While it worked, it wasn’t the most elegant way to do it, so [Chuck] made a video showing how to do it parametrically. You can see that video below, along with the original hinge video.

There are really two major techniques [Chuck] shows. First, he adds the necessary pieces to create the hinges to the Tinkercad toolbox. That makes it really simple to add them to any of your future designs. Second, he uses a combination of numeric parameters and duplication to quickly and precisely place the hinge components across another object — in this case a Batman logo.

Continue reading “Parametric Hinges With Tinkercad”