Mini Laptop Needs Custom Kernel

These days, you rarely have to build your own Linux kernel. You just take what your distribution ships, and it usually works just fine. However, [Andrei] became enamored with a friend’s cyberdeck and decided that he’d prefer to travel with a very small laptop. The problem is, it didn’t work well with a stock kernel. So, time to build the kernel again.

Of course, he tried to simply install Linux. The installer showed a blank screen. You might guess that you need to add ‘nomodeset’ to the kernel options. But the screen was still a bit wacky. [Andrei] likens troubleshooting problems like this to peeling an onion. There are many layers to peel back, and you are probably going to shed some tears.

Continue reading “Mini Laptop Needs Custom Kernel”

WALL-E’s Forgotten Sibling Rebuilt

Do you remember the movie WALL-E? Apparently, [Leviathan engineering] did, and he wasn’t as struck by the title character, or Eva, or even the Captain. He was captivated by BURN-E. His working model shows up in the video below.

We’ll be honest. BURN-E didn’t ring a bell for us, though we remember the movie. He grabbed a 3D design for the robot on the Internet and planned out holes for some servos and other hardware.

Continue reading “WALL-E’s Forgotten Sibling Rebuilt”

A Walk Down PC Video Card Memory Lane

These days, video cards are virtually supercomputers. When they aren’t driving your screen, they are decoding video, crunching physics models, or processing large-language model algorithms. But it wasn’t always like that. The old video cards were downright simple. Once PCs gained more sophisticated buses, video cards got a little better. But hardware acceleration on an old-fashioned VGA card would be unworthy of the cheapest burner phone at the big box store. Not to mention, the card is probably twice the size of the phone. [Bits and Bolts] has a look at several old cards, including a PCI version of the Tseng ET4000, state-of-the-art of the late 1990s.

You might think that’s a misprint. Most of the older Tseng boards were ISA, but apparently, there were some with the PCI bus or the older VESA local bus. Acceleration here typically meant dedicated hardware for handling BitBlt and, perhaps, a hardware cursor.

Continue reading “A Walk Down PC Video Card Memory Lane”

NTRON Plays Games, Music

What do you get if you meld a Raspberry Pi, a chiptune synthesizer, and a case that looks like an imaginary Kenback-2000? Well, if you are [Artifextron], you get the NTRON. Part Nintendo console, part chip tune synthesizer, and part objet d’art. You can see the device do its things in the video below.

This is less of a bare metal design and more of a synthesis of parts, but it is a very clever system design using audio mixers and an assortment of modules to do its tasks. It does have an IC handling the gamepad ports. Of course, it also features a ton of 3D printed parts.

Continue reading “NTRON Plays Games, Music”

The 19th Century Quantum Mechanics

While William Rowan Hamilton isn’t a household name like, say, Einstein or Hawking, he might have been. It turns out the Irish mathematician almost stumbled on quantum theory in the or around 1827. [Robyn Arianrhod] has the story in a post on The Conversation.

Famously, Newton worked out the rules for the motion of ordinary objects back in 1687. People like Euler and Lagrange kept improving on the ideas of what we call Newtonian physics. Hamilton produced an especially useful improvement by treating light rays and moving particles the same.

Continue reading “The 19th Century Quantum Mechanics”

Active Probe Reaches 3 GHz

When you think of a scope probe, you usually think of what is basically a wire with a spring hook and an attenuator. Those are passive probes. [Kerry Wong] shows off a pre-release active probe that sidesteps some problems with those ordinary passive probes.

The trick is that passive probes have input capacitance that interferes with very high-frequency signals. They also tend to have less noise. Although the probe isn’t on the market yet, it is set to debut at a price lower than competitive probes. Still, be warned. The reason you don’t see them more often is that $1,000 is relatively inexpensive for an active probe.

Continue reading “Active Probe Reaches 3 GHz”

Set Phone To… Hyperspectral

While our eyes are miraculous little devices, they aren’t very sensitive outside of the normal old red, green, and blue spectra. The camera in your phone is far more sensitive, and scientists want to use those sensors in place of expensive hyperspectral ones. Researchers at Purdue have a cunning plan: use a calibration card.

The idea is to take a snap of the special card and use it to understand the camera’s exact response to different colors in the current lighting conditions. Once calibrated to the card, they can detect differences as small as 1.6 nanometers in light wavelengths. That’s on par with commercial hyperspectral sensors, according to the post.

You may wonder why you would care. Sensors like this are useful for medical diagnostic equipment, analysis of artwork, monitoring air quality, and more. Apparently, high-end whisky has a distinctive color profile, so you can now use your phone to tell if you are getting the cheap stuff or not.

We also imagine you might find a use for this in phone-based spectrometers. There is plenty to see in the hyperspectral world.