The ZX Spectrum Logic Analyzer

We know [Happy Little Diodes] frequently works with logic analyzer projects. His recent wireless logic analyzer for the ZX Spectrum is one of the oddest ones we’ve seen in a while. The heart of the system is an RP2040, and there are two boards. One board interfaces with the computer, and another hosts the controller.

The logic analyzer core is powered by a common open-source analyzer from [Eldrgusman]. This is one of the nice things about open source tools. Most people probably don’t need a logic analyzer that plugs directly into a ZX Spectrum. But if you do, it is fairly simple to repurpose a more generic piece of code and rework the hardware, if necessary.

Continue reading “The ZX Spectrum Logic Analyzer”

Unwinding An Unusual Slide Rule

If the Otis King slide rule in [Chris Staecker’s] latest video looks a bit familiar, you might be getting up there in age, or you might remember seeing us talk about one in our collection. Actually, we have two floating around one of the Hackaday bunkers, and they are quite the conversation piece. You can watch the video below.

The device is often mistaken for a spyglass, but it is really a huge slide rule with the scale wrapped around in a rod-shaped form factor. The video says the scale is the same as a 30-inch scale, but we think it is closer to 66 inches.

Continue reading “Unwinding An Unusual Slide Rule”

Semiconductor Simulator Lets You Play IC Designer

For circuit simulation, we have always been enthralled with the Falstad simulator which is a simple, Spice-like simulator that runs in the browser. [Brandon] has a simulator, too, but it simulates semiconductor devices. With help from [Paul Falstad], that simulator also runs in the browser.

This simulator takes a little thinking and lets you build devices as you might on an IC die. The key is to use the drop-down that initially says “Interact” to select a tool. Then, the drop-down below lets you select what you are drawing, which can be a voltage source, metal, or various materials you find in semiconductor devices, like n-type or a dielectric.

It is a bit tricky, but if you check out the examples first (like this diode), it gets easier. The main page has many examples. You can even build up entire subsystems like a ring oscillator or a DRAM cell.

Designing at this level has its own quirks. For example, in the real world, you think of resistors as something you can use with great precision, and capacitors are often “sloppy.” On an IC substrate, resistors are often the sloppy component. While capacitor values might not be exact, it is very easy to get an extremely precise ratio of two capacitors because the plate size is tightly controlled. This leads to a different mindset than you are used to when designing with discrete components.

Of course, this is just a simulation, so everything can be perfect. If, for some reason, you don’t know about the Falstad simulator, check it out now.

What’s In A Washer?

Some things are so common you forget about them. How often do you think about an ordinary resistor, for example? Yet if you have a bad resistor, you’ll find it can be a big problem. Plus, how can you really understand electronics if you don’t know all the subtle details of a resistor? In the mechanical world, you could make the same arguments about the washer, and [New Mind] is ready to explain the history and the gory details of using washers in a recent video that you can see below.

The simple answer is that washers allow a bolt to fit in a hole otherwise too large, but that’s only a small part of the story. Technically, what you are really doing is distributing the load of a threaded fastener. However, washers can also act as spacers or springs. Some washers can lock, and some indicate various things like wear or preloading conditions.

Continue reading “What’s In A Washer?”

Simulating Cable TV

[Wrongdog Recons] suffers from a severe case of nostalgia. His earlier project simulated broadcast TV, and he was a little surprised at how popular the project was on GitHub. As people requested features, he realized that he could create a simulated cable box and emulate a 1990s-era cable TV system. Of course, you also needed a physical box, which turned into another project. You can see more about the project in the video below.

Inside is, unsurprisingly, a Raspberry Pi. Then you have to pretend to be a cable TV scheduler and organize your different video files for channels. You can interleave commercials and station breaks.

One addition was a scheduler so you could set up things like football games only play during football season. You can also control timing so you don’t get beer commercials during Saturday morning cartoons.

Continue reading “Simulating Cable TV”

Open Source ELINT Accidentally From NASA

You normally think of ELINT — Electronic Intelligence — as something done in secret by shadowy three-letter agencies or the military. The term usually means gathering intelligence from signals that don’t contain speech (since that’s COMINT). But [Nukes] was looking at public data from NASA’s SMAP satellite and made an interesting discovery. Despite the satellite’s mission to measure soil moisture, it also provided data on strange happenings in the radio spectrum.

While 1.4 GHz is technically in the L-band, it is reserved (from 1.400–1.427 GHz)  for specialized purposes. The frequency is critical for radio astronomy, so it is typically clear other than low-power safety critical data systems that benefit from the low potential for interference. SMAP, coincidentally, listens on 1.41 GHz and maps where there is interference.

Continue reading “Open Source ELINT Accidentally From NASA”

Tearing Down A Forgotten Video Game

Remember Video Volley? No? We don’t either. It looks like it was a very early video game console that could play tennis, hockey, or handball. In this video, [James] tears one apart. If you are like us, we are guessing there will be little more than one of those General Instrument video game chips inside.

These don’t look like they were mass-produced. The case looks like something off the shelf from those days. The whole thing looks more like a nice homebrew project or a pretty good prototype. Not like something you’d buy in a store.

Continue reading “Tearing Down A Forgotten Video Game”