A YouTube Subscriber Counter With A Tetris Twist

When it comes to YouTube subscriber counters, there’s not much wiggle room for creativity. Sure, you can go with Nixies or even more exotic displays, but in the end a counter is just a bunch of numbers.

But [Brian Lough] found a way to jazz things up with this Tetris-playing YouTube sub counter. For those of you not familiar with [Brian]’s channel, it’s really worth a watch. He tends toward long live-stream videos where he works on one project for a marathon session, and there’s a lot to learn from peeking over his virtual shoulder. This project stems from an earlier video, posted after the break, which itself was a condensation of several sessions hacking with the RGB matrix that would form the display for this project. He’s become enamored of the cheap and readily-available 64×32 pixel RGB displays, and borrowing an idea from Mc Lighting author [toblum], he decided that digits being assembled from falling Tetris blocks would be a nice twist. [Brian] had to port the Tetris-ifying code to Arduino before getting the ESP8266 to do the work of getting the subs and updating the display. We think the display looks great, and the fact that the library is open and available means that you too can add Tetris animations to your projects.

None of this is to say that more traditional sub counters can’t be cool too. From a minimalist display to keeping track of all your social media, good designs are everywhere. And adding a solid copper play button is a nice touch too.

Continue reading “A YouTube Subscriber Counter With A Tetris Twist”

Tiny Sideways Tetris on a Business Card

Everyone recognizes Tetris, even when it’s tiny Tetris played sideways on a business card. [Michael Teeuw] designed these PCBs and they sport small OLED screens to display contact info. The Tetris game is actually a hidden easter egg; a long press on one of the buttons starts it up.

It turns out that getting a playable Tetris onto the ATtiny85 microcontroller was a challenge. Drawing lines and shapes is easy with resources like TinyOLED or Adafruit’s SSD1306 library, but to draw those realtime graphics onto the 128×32 OLED using that method requires a buffer size that wouldn’t fit the ATtiny85’s available RAM.

To solve this problem, [Michael] avoids the need for a screen buffer by calculating the data to be written to the OLED on the fly. In addition, the fact that the smallest possible element is a 4×4 pixel square reduces the overall memory needed to track the screen contents. As a result, the usual required chunk of memory to use as a screen buffer is avoided. [Michael] also detailed the PCB design and board assembly phases for those of you interested in the process of putting together the cards using a combination of hot air reflow and hand soldering.

PCB business cards showcase all kinds of cleverness. The Magic 8-Ball Business Card is refreshingly concise, and the project that became the Arduboy had milled cutouts to better fit components, keeping everything super slim.

80’s Smartwatch Finally Plays Tetris

While the current generation of smartwatches have only been on the market for a few years, companies have been trying to put a computer on your wrist since as far back as the 80s with varying degrees of success. One such company was Seiko, who in 1984 unveiled the UC-2000: a delightfully antiquated attempt at bridging the gap between wristwatch and personal computer. Featuring a 4-bit CPU, 2 KB of RAM, and 6 KB of ROM, the UC-2000 was closer to a Tamagotchi than its modern day counterparts, but at least it could run BASIC.

Dumping registers

Ever since he saw the UC-2000 mentioned online, [Alexander] wanted to get one and try his hand at developing his own software for it. After securing one on eBay, the first challenge was getting it connected up to a modern computer. (Translated from Russian here.) [Alexander] managed to modernize the UC-2000’s novel induction based data transfer mechanism with help from a ATtiny85, which allowed him to get his own code on the watch, all that was left was figuring out how to write it.

With extremely limited published information, and no toolchain, [Alexander] did an incredible job of figuring out the assembly required to interact with the hardware. Along the way he made a number of discoveries which set his plans back, such as the fact that there is no way to directly control individual pixels on the screen; all graphics would have to be done with the built-in symbols.

The culmination of all this hard work? Playing Tetris, naturally. Though [Alexander] admits that limitations of the device’s hardware meant the game had to be simplified a bit, he’s almost certainly having more fun than any of the UC-2000’s original owners did with this device. He’s setup a GitHub repository for anyone who wishes to join him in this brave new world of vintage wrist computing.

[Alexander] isn’t the only one experimenting with fringe wearable computers. We’ve seen our fair share of interesting smartwatches, featuring everything from novel input methods to complete scratch-builds.

Continue reading “80’s Smartwatch Finally Plays Tetris”

Building a Working Game of Tetris in Conway’s Game of Life

If you haven’t been following along with Conway’s Game of Life, it’s come a long way from the mathematical puzzle published in Scientific American in 1970. Over the years, mathematicians have discovered a wide array of constructs that operate within Life’s rules, including many that can be leveraged to perform programming functions — logic gates, latches, multiplexers, and so on. Some of these creations have gotten rather huge and complicated, at least in terms of Life cells. For instance, the OTCA metapixel is comprised of 64,691 cells and has the ability to mimic any cellular automata found in Life.

A group of hackers has used OTCA metapixels to create a Tetris game out of Life elements. The game features all 7 shapes as well as the the movement, rotation, and drops one would expect. You can even preview the next piece. The game is the creation of many people who worked on individual parts of the larger program. They built a RISC computer out of Game of Life elements, as well as am assembler and compiler for it, with the OTCA metapixels doing the heavy lifting. (The image at the top of the post is the program’s data synchronizer.

Check out the project’s source code on GitHub, and use this interpreter. Set the RAM to 3-32 and hit run.

For a couple of other examples of Life creations, check out the Game of Life clock and music synthesized from Life automata we published earlier.

Mini Tetris Game Packs a Tiny85

[dombeef] originally built pocketTETRIS as a Father’s Day gift for his Tetris-loving pops. However, having finished the project he’s decided to share it with the universe, and it’s looking rather sweet.

He made the game the smallest he could make, with size limitations imposed by a 0.96” OLED display, the coin-cell battery pack, and his desire for a durable 3D-printed case. It uses a ATtiny85 for the brains, mounted on a custom PCB that [dombeef] designed in KiCad. The Arduino code was modified from Andy Jackson’s ATtinyArcade code, giving it three-button capability instead of two. [dombeef] has details on the project page on Hackaday.io as well as 3D-design and PCB-design files on the project’s code repository on GitHub.

We’ve published a fair number of Tetris posts in the past, including skyscraper Tetris, playing Tetris on a soldering iron, and Tetris in 446 bytes. What’s the smallest Tetris you’ve seen?

Tetris on a Soldering Iron

Our commenteers have all said good things about the open-source TS100 soldering iron pencil: things like “it solders well”. But we’ve all got soldering irons that solder well. What possible extra value does having open-source firmware on a soldering iron bring? [Joric] answered that question for us — it can play Tetris. (Video embedded below.)

While that’s cool and all, it wasn’t until we were reading through the README over at GitHub that the funniest part of this hack hit us. Every time you lose a game, the iron tip temperature increases by 10 degrees. Tetris for masochists? The makings of some horrible bar bets? We’re just glad that it’s open-source, because we’re not that good and it would get too hot to handle fast.

We haven’t tried out a TS100 yet, but this hack is almost pushing us to impulse purchase. There are alternative versions of the firmware if you just don’t like the font, for instance. And now, Tetris. Will this become the hot new gaming platform that you’ve been waiting for? Let us know in the comments.

Continue reading “Tetris on a Soldering Iron”

LED Tetris Table

No hackspace is complete without an arcade game project or two. Usually these projects are time-worn generic cabinets scarred by the frustrated kicks of a million teenagers, the decades-old Japanese CRT monitors inside of which are ready to shuffle off this mortal coil. You are lucky if you catch them on a rare moment of functioning, and their owners are always hovering ready to attend to any soon-to-expire electronics.

York Hackspace have done things a little differently though. Their member [John] has an arcade game project, but instead of an aged cabinet he’s produced his own tabletop game with an array of multicolour addressable LED strips powered by a Raspberry Pi. Each LED sits in its own foam cell under the translucent surface, so it forms a low resolution color block display.

It’s a Tetris game in its first incarnation, but there is also a copy of Snake underway for it. If it catches your attention you can write your own games, because all its resources are available in a GitHub repository.

This is one of many Tetris interfaces we’ve seen over the years. Largest was probably this skyscraper, but this oscilloscope version is particularly well-executed. One of our most recent forays into Tetris-land though is also one of the most technically interesting, a 446-byte implementation in a master boot record.