For as much old coal mines are a blight upon the face of the Earth, they may have at least one potential positive side-effect. Where the coal mine consists out of tunnels that were drilled deep into the soil, these tend to get flooded by groundwater after the pumps that keep them dry are turned off. Depending on the surrounding rock, this water tends to get not only contaminated, but also warmed up. As the BBC explains in a recent video as a follow-up to a 2021 article, when the water is pumped up for decontamination, it can be run through a heat exchanger in order to provide heat for homes and businesses. Continue reading “Using Old Coal Mines As Cheap Sources Of Geothermal Heat”
Mag Loop Antenna Has A Brain
Magnetic loop antennas are great if you are limited on space since they are just a potentially small loop of wire. The problem is, they are sharply tuned. You normally have an adjustment capacitor to tune the antenna to different frequencies. [TekMakerUK] built one with a motor and an Arduino that he can tune from an Android phone. You can see more about the project in the video below.
If you want to transmit, the capacitor is often the weak part of the system. Luckily, some old gear yielded a capacitor with multiple sections and enough plate distance to handle the 5W desired. Of course, motor driving a capacitor isn’t a new idea, but this setup is nice since it uses a stepper motor and a rotary encoder.
Truckla Gets An Open Source Charging Buddy
More than three years have passed since Tesla announced its Cybertruck, and while not a one has been delivered, the first Tesla truck, Truckla, has kept on truckin’. [Simone Giertz] just posted an update of what Truckla has been up to since it was built.
[Giertz] and friend’s DIT (do-it-together) truck was something of an internet sensation when it was revealed several months before the official Tesla Cybertruck. As with many of our own projects, while it was technically done, it still had some rough edges that kept it from being truly finished, like a lack of proper waterproofing or a tailgate that didn’t fold.
Deciding enough was enough, [Giertz] brought Truckla to [Marcos Ramirez] and [Ross Huber] to fix the waterproofing and broken tailgate while she went to [Viam Labs] to build Chargla, an Open Source charging bot for Truckla. The charging bot uses a linear actuator on a rover platform to dock with the charging port and is guided by a computer vision system. Two Raspberry Pis power handle the processing for the operation. We’re anxious to see what’s next in [Giertz]’s quest of “picking up the broken promises of the car world.”
If you want to see some more EV charger hacks, check out this Arduino-Based charger and the J1772 Hydra.
Continue reading “Truckla Gets An Open Source Charging Buddy”
The UK’s ST40 Spherical Tokamak Achieves Crucial Plasma Temperatures
As the race towards the first commercially viable nuclear fusion reactor heats up, the UK-based Tokamak Energy has published a paper on its recent achievements with its ST40 spherical tokamak. Most notable is the achieving of plasma temperatures of over 100 million Kelvin, which would put this fusion reactor firmly within the range for deuterium-tritium fusion at a rate that would lead credence to the projection made by Tokamak Energy about building its first commercial fusion plants in the 2030s.
The ST40 is intended to provide the necessary data to construct the ST80-HTS by 2026, which itself would be a testing ground for the first commercial reactor, called the ST-E1, which would be rated at 200 MWe. Although this may seem ambitious, Tokamak Energy didn’t come out of nowhere, but is a spin-of of Culham Centre for Fusion Energy (CCFE), the UK’s national laboratory for fusion research, which was grounded in 1965, and has been for decades been involved in spherical tokamak research projects like MAST and MAST-Upgrade, with STEP as its own design for a commercial fusion reactor.
The advantage offered by spherical tokamaks compared to regular tokamaks is that they favor a very compact construction style which puts the magnets very close to the plasma, effectively making them more efficient in retaining the plasma, with less power required to maintain stable plasma. Although this makes the use of super-conducting electromagnets not necessary, it does mean that wear and tear on these magnets is significantly higher. What this does mean is that this type of tokamak can be much cheaper than alternative reactor types, even if they do not scale as well.
Whether or not Tokamak Energy will be the first to achieve commercial nuclear fusion remains to be seen. So far Commonwealth Fusion’s SPARC and a whole host of Western and Asian fusion projects are vying for that gold medal.
Analog Anoraks: The Op Amp Contest Starts Now!
We thought it was time to give the analog side of Hackaday their chance to shine, and what’s the quintessential analog IC? The op amp! Whether you’re doing tricky signal conditioning, analog computations like it’s 1960, or just making music sound good, op amps are at the heart of many designs. This contest, starting right now, is your chance to show off what you can do with a good op amp, or a few.
And for everyone else, here’s your chance to dip your toes into the warm analog waters. Whether you’ve always wanted to build a Chua’s chaos circuit or just to listen to music, there’s probably an op-amp project that will fit your personal bill. All you have to do to enter is set up a project on Hackaday.io, and use the pull-down menu to enter. We welcome shows of op-amp bravado, naturally, but we’re also stoked to see your simple projects that might help our digital friends leave their world of black and white, and enter into the shades of grey.
Thanks to Digi-Key, our sponsor for the challenge, there are three $150 shopping sprees on the line for the winners. And as always, there are some honorable mention categories to help whet your analog whistle, and to give us an excuse to feature a lot of great projects. You’ve got until June 6, to get your entry in, but these aren’t necessarily simple builds, so get going now.
Continue reading “Analog Anoraks: The Op Amp Contest Starts Now!”
It Isn’t WebAssembly, But It Is Assembly In Your Browser
You might think assembly language on a PC is passe. After all, we have a host of efficient high-level languages and plenty of resources. But there are times you want to use assembly for some reason. Even if you don’t, the art of writing assembly language is very satisfying for some people — like an intricate logic puzzle. Getting your assembly language fix on a microcontroller is usually pretty simple, but on a PC there are a lot of hoops to jump. So why not use your browser? That’s the point of this snazzy 8086 assembler and emulator that runs in your browser. Actually, it is not native to the browser, but thanks to WebAssembly, it works fine there, too.
No need to set up strange operating system environments or link to an executable file format. Just write some code, watch it run, and examine all the resulting registers. You can do things using BIOS interrupts, though, so if you want to write to the screen or whatnot, you can do that, too.
The emulation isn’t very fast, but if you are single-stepping or watching, that’s not a bad thing. It does mean you may want to adjust your timing loops, though. We didn’t test our theory, but we expect this is only real mode 8086 emulation because we don’t see any protected mode registers. That’s not a problem, though. For a learning tool, you’d probably want to stick with real mode, anyway. The GitHub page has many examples, ranging from a sort to factorials. Just the kind of programs you want for learning about the language.
Why not learn on any of a number of other simulated processors? The 8086 architecture is still dominant, and even though x86_64 isn’t exactly the same, there is a lot of commonalities. Besides, you have to pretend to be an 8086, at least through part of the boot sequence.
If you’d rather compile “real” programs, it isn’t that hard. There are some excellent tutorials available, too.
A Miniature MNT For Every Pocket
Last time Hackaday went hands on with a product from German company MNT, it was the Reform laptop; a full size computer with a full feature set and fully open source design. Now they’re back with the same value proposition and feature set crammed into a much more adorable (and colorful!) package with the MNT Pocket Reform. If you want the big Reform’s open source philosophy in a body fit for a coat pocket, this might be the computing device for you.
To refresh your memory, MNT is a company that specializes in open source hardware and the software to support it. They are probably best known for the Reform, their first laptop. Its marquis feature is a fully open design, from the mechanical components (designed with OSS tools) to the PCBAs (designed with KiCad) to the software (designed with, uh, software). When originally shipped that product packed a DIMM-style System On Module (SOM) with a default configuration containing a quad core NXP i.MX8M Quad and 4GB of RAM, as well as mini PCIe Card and M key m.2 2280 slots on the motherboard for storage and connectivity. That computer was designed to be easily serviceable and included a plethora of full sized ports along with easy to source cylindrical battery cells. The Pocket Reform takes the same intent and channels it into a much smaller package.