Autonomous Wheelchair Lets Jetson Do The Driving

Compared to their manual counterparts, electric wheelchairs are far less demanding to operate, as the user doesn’t need to have upper body strength normally required to turn the wheels. But even a motorized wheelchair needs some kind of input from the user to control it, which still may pose a considerable challenge depending on the individual’s specific abilities.

Hoping to improve on the situation, [Kabilan KB] has developed a self-driving electric wheelchair that can navigate around obstacles by feeding the output of an Intel RealSense Depth Camera and LiDAR module into a Jetson Nano Developer Kit running OpenCV. To control the actual motors, the Jetson is connected to an Arduino which in turn is wired into a common L298N motor driver board.

As [Kabilan] explains on the NVIDIA Blog, he specifically chose off-the-shelf components and the most affordable electric wheelchair he could find to bring the total cost of the project as low as possible. An undergraduate from the Karunya Institute of Technology and Sciences in Coimbatore, India, he notes that this sort of assistive technology is usually only available to more affluent patients. With his cost-saving measures, he hopes to address that imbalance.

While automatic obstacle avoidance would already be a big help for many users, [Kabilan] imagines improved software taking things a step further. For example, a user could simply press a button to indicate which room of the house they want to move to, and the chair could drive itself there automatically. With increasingly powerful single-board computers and the state of open source self-driving technology steadily improving, it’s not hard to imagine a future where this kind of technology is commonplace.

The Questionable Benefits Of Paying More For Air Quality Monitors

Does paying more for air quality monitors (AQMs) make sense? This was the question which [Achim Haug] at the Air Gradient project sought to answer, with the answer being a rather revealing ‘not at all’. Using data from the independent South Coast Air Quality Management District agency (South Coast AQMD), a plot was created of a range of commercially available AQMs for PM2.5 pollutants and their performance against a reference monitor. Here a value of 1.00 would mean performance equal to the (expensive, calibrated) reference.

R2 vs Price. Data Source: South Coast AQMD Data
R2 vs Price. Data Source: South Coast AQMD Data

This plot shows clearly that paying more for an AQM does not get you better performance, with the reason for this explored in a follow-up article by [Achim], where a range of AQMs are checked for which PM2.5 sensors they actually use. Perhaps unsurprisingly, most AQMs use the same PM2.5 sensors, with the sensor module not really affecting the cost of the AQM as they all cost about $10-20 in bulk.

Rather it seems that the other sensors (for CO2, NO2 and other measurements) along with features such as WiFi, LoRa determine much of the price tag. For getting good measurements, properties such as airflow over the sensors, the implemented compensation algorithms are probably the main things you want to look at when purchasing (or building)  an AQM.

(Heading image: particulate matter sizes, relative to a human hair. Credit: California ARB)

DIY Repair Brings An X-Ray Microscope Back Into Focus

Aside from idle curiosity, very few of us need to see inside chips and components to diagnose a circuit. But reverse engineering is another story; being able to see what lies beneath the inscrutable epoxy blobs that protect the silicon within is a vital capability, one that might justify the expense involved in procuring an X-ray imager.  But what’s to be done when such an exotic and expensive — not to mention potentially deadly — machine breaks down? Obviously, you fix it yourself!

To be fair, [Shahriar]’s Faxitron MX-20 digital X-ray microscope was only a little wonky. It still generally worked, but just took a while to snap into the kind of sharp focus that he needs to really delve into the guts of a chip. This one problem was more than enough to justify tearing into the machine, but not without first reviewing the essentials of X-ray production — a subject that we’ve given a detailed look, too — to better understand the potential hazards of a DIY repair.

With that out of the way and with the machine completely powered down, [Shahriar] got down to the repair. The engineering of the instrument is pretty impressive, as it should be for something dealing with high voltage, heavy thermal loads, and ionizing radiation. The power supply board was an obvious place to start, since electrostatically focusing an X-ray beam depends on controlling the high voltage on the cathode cup. After confirming the high-voltage module was still working, [Shahriar] homed in on a potential culprit — a DIP reed relay.

Replacing that did the trick, enough so that he was able to image the bad component with the X-ray imager. The images are amazing; you can clearly see the dual magnetic reed switches, and the focus is so sharp you can make out the wire of the coil. There are a couple of other X-ray treats, so make sure you check them out in the video below.

Continue reading “DIY Repair Brings An X-Ray Microscope Back Into Focus”

Hackaday Prize 2023: AutoDuct Smart Air Duct

Modern building techniques are relying more and more on passive elements to improve heating and cooling efficiencies, from placing windows in ways to either absorb sunlight or shade it out to using high R-value insulation to completely sealing the living space to prevent airflow in or out of the structure. One downside of sealing the space in this fashion, though, is the new problem of venting the space to provide fresh air to the occupants. This 3D printed vent system looks to improve things.

Known as the AutoDuct, the shutter and fan combination is designed to help vent apartments with decentralized systems. It can automatically control airflow and also reduces external noise passing through the system using a printed shutter mechanism which is also designed to keep out cold air on windy days.

A control system enables features like scheduling and automatic humidity control. A mobile app is available for more direct control if needed. The system itself can also integrate into various home automation systems like Apple’s HomeKit.

A 100% passive house that’s also as energy-efficient as possible might be an unobtainable ideal, but the closer we can get, the better. Some other projects we’ve seen lately to help climate control systems include this heat pump control system and this automatic HVAC duct booster fan system.

How Three Letters Brought Down UK Air Traffic Control

The UK bank holiday weekend at the end of August is a national holiday in which it sometimes seems the entire country ups sticks and makes for somewhere with a beach. This year though, many of them couldn’t, because the country’s NATS air traffic system went down and stranded many to grumble in the heat of a crowded terminal. At the time it was blamed on faulty flight data, but news now emerges that the data which brought down an entire country’s air traffic control may have not been faulty at all.

Armed with the official incident report and publicly available flight data, Internet sleuths theorize that the trouble was due to one particular flight: French Bee flight 731 from Los Angeles to Paris. The flight itself was unremarkable, but the data which sent the NATS computers into a tailspin came from two of its waypoints — Devil’s Lake Wisconsin and Deauville Normandy — having the same DVL identifier. Given the vast distance between the two points, the system believed it was looking at a faulty route, and refused to process it. A backup system automatically stepped in to try and reconcile the data, but it made the same determination as the primary software, so the whole system apparently ground to a halt.

It’s important to note that there was nothing wrong with the flight plan entered in by the French Bee pilots, and that early stories blaming faulty data were themselves at fault. However we are guessing that air traffic software developers worldwide are currently scrambling to check their code for this particular bug. We’re fortunate indeed that safety wasn’t compromised and only inconvenience was the major outcome.

Air traffic control doesn’t feature here too often, but we’ve previously looked at a much earlier system.

Header image: John Evans, CC BY-SA 2.0.

Zinc-Air, The Next Contender In Vehicle Batteries?

If you’ve got an interest in technology, it’s inevitable that your feed will feature a constant supply of stories with titles in the vein of “New battery breakthrough offers unlimited life and capacity!”. If we had a pound, dollar, or Euro for each one, we’d be millionaires by now. But while the real science behind the breathless headlines will undoubtedly have provided incremental battery improvements, we’re still waiting for the unlimited battery.

It’s not to say that they don’t conceal some interesting stories though, and there’s an announcement from Australia proving this point admirably. Scientists at ECU in Perth have created a new cathode compound for rechargeable zinc-air batteries, which it is hoped will make them much safer and cheaper competitors for lithium-ion cells.

Most of us think of zinc-air batteries as the tiny cells you’d put in a camera or a hearing aid, but these conceal a chemistry with significant potential that is held back by the difficulty of creating a reliable cathode. In these batteries the cathode is a porous support in which a reaction between zinc powder wet paste and oxygen in the air occurs, turning zinc into zinc oxide and releasing electrons which can be harvested as electricity. They have a very high power density, but previous cathode materials have quickly degraded performance when presented with significant load.

The new cathode support is a nano-composite material containing cobalt, nickel, and iron, and is claimed to offer much better performance without the degradation. Whether or not it can be mass-produced remains to be seen, but as a possible alternative to lithium-ion in portable and transport applications it’s of great interest.

Transistor Radio Repair, More Complex Than It Seems

The humble transistor radio is one of those consumer devices that stubbornly refuses to go away, but it’s fair to say that it’s not the mover and shaker in the world of electronics it might once have been. Thus it’s also not a staple of the repair bench anymore, where fixing a pocket radio might have been all in a day’s work decades ago now they’re a rare sight. [David Tipton] has a Philips radio from we’re guessing the later half of the 1960s which didn’t work, and we’re along for the ride as he takes us through its repair.

It’s an extremely conventional design of the era, with a self-oscillating mixer, 455 kHz IF amplifier, and class AB audio amplifier. The devices are a little archaic by today’s standards, with comically low-gain germanium transistors and passives from the Ark. Injecting a signal reveals that the various stages all work, but that mixer isn’t oscillating. A lot of fault-finding ensues, and perhaps with a little bit of embarrassment, he eventually discovers a blob of solder shorting a collector resistor to ground. All isn’t over though, for the volume pot is also kaput. Who knew that the track from a modern component could be transplanted into one from the 1960s?

Continue reading “Transistor Radio Repair, More Complex Than It Seems”