It’s Printable, It’s Programmable, It’s E. Coli

Well, whaddya know? It seems that E. coli, the bane of Romaine and spinach everywhere, has at least one practical use. Researchers at Harvard have created a kind of 3D-printable ink that is alive and made entirely of microbes produced by E. coli. Although this is not the first so-called living ink, it does hold the title of the first living ink that doesn’t need any additional polymers to provide structure.

Passing the pillar test up to 16mm. Image via Nature

Because the ink is alive, it is technically programmable in the sense that it can self-assemble proteins into nanofibers, and further assemble those into nanofiber networks that comprise hydrogels.

One of the researchers compared the ink to a seed, which has everything it needs to eventually grow into a glorious tree. In this way, the ink could be used as a renewable building material both on Earth and in space. Though the ink does not continue to grow after being printed, the resulting structure would be a living system that could theoretically heal itself.

The ink creation process begins when the researchers induce genetically-engineered bacteria cultures to grow the ink, which is also made of living cells. The ink is then harvested and becomes gelatin-like, holding its shape well enough to go through a 3D printer. It even passes the bridging test, supporting its own weight between pillars placed up to 16 mm apart. (We’d like to see a Benchie.)

Continue reading “It’s Printable, It’s Programmable, It’s E. Coli”

RC3 2021: Now Here, Nowhere

The annual meeting of the Chaos Computer Club, Germany’s giant hacker group, is online again this year. While those of us here are sad that we don’t get to see our hacker friends in person, our loss is your gain — the whole thing is online for the entire world to enjoy.

This year’s Congress has gone entirely decentralized, with many local clubs hosting their own video streams and “stages”. Instead of four tracks, there are now six or seven tracks of talks going on simultaneously, so prepare to be overwhelmed by choice. You can find the overall schedule here, so if you see anything you’d like to watch, you’ll know when to tune in.

Like last year, there is also a parallel 2D simulation world, like Zelda with videoconferencing, but for which you’ll need a ticket, and they’re sold out. (Check out the demo video if you want to see what that’s about.) And what would a conference be without t-shirts, armbands, and even a sticker exchange? Or course, it all has to be done by mail, but you do what you can.

We’ll be keeping our eyes on the talks, and let you know if we see anything good. If you do the same, let us know in the comments!

The Label Says HDMI 2.1 But That Doesn’t Mean You’ll Get It

Technology moves quickly these days as consumers continue to demand more data and more pixels. We see regular updates to standards for USB and RAM continually coming down the pipeline as the quest for greater performance goes on.

HDMI 2.1 is the latest version of the popular audio-visual interface, and promises a raft of new features and greater performance than preceding versions of the standard. As it turns out, though, buying a new monitor or TV with an HDMI 2.1 logo on the box doesn’t mean you’ll get any of those new features, as discovered by TFT Central.

Continue reading “The Label Says HDMI 2.1 But That Doesn’t Mean You’ll Get It”

First Hacks: The Brand New Nokia 5G Gateway Router

Aside from being the focus of a series of bizarre conspiracy theories, 5G cellular networks offer the promise of ultra-fast Internet access anywhere within their range. To that end there are a new breed of devices designed to provide home broadband using 5G as a backhaul. It’s one of these, a Nokia Fastmile, that [Eddie Zhang] received, and he’s found it to be an interesting teardown and investigation. Spoiler: it runs Android and has exploitable bugs.

A privilege escalation bug in the web administration tool led to gaining the ability to export and modify configuration files, but sadly though a telnet prompt can be opened it’s not much use without the password. Uncovering some blocked-off ports on the base of the unit revealed a USB-C port, which was found to connect to an Android device. Via ADB a shell could be opened on Android, but on further  investigation it was found that the Fastmile is not a single device but two separate ones. Inside is a PCB with an Android 5G phone to handle the connection, and another with a completely separate home router.

With access to the Android side and a login prompt on the router side that was as far as he was prepared to go without risking bricking his Fastmile. It only remained to do a teardown, which reveals the separate PCBs with their own heatsinks, and an impressive antenna array. Perhaps these devices will in time become as ubiquitous as old routers, and we’ll see them fully laid bare.

It’s a shame that we’ve had to write more about the conspiracy theories surrounding 5G than real 5G devices, but maybe we’ll see more teardowns like this one to make up for it.

Inspecting a SIM card via MTM

Diving The Depths Of Ma Bell

The modern smartphone is a marvel of sensors, radios, inputs, outputs, and processing power. In particular, some of those radios, such as WiFi and cellular, have grown fiendishly complex over the years. Even when that complexity is compressed down for the user into the one-dimensional space of the signal strength bars at the top of your phone. So when [David Burgess] was asked to look at some cellphone records of text messages and figure out where some of the more mysterious messages were coming from, it led him down a rabbit hole into the dark arts behind the glowing phone screen.

The number in question was 1111340002, sent by a phone connected to AT&T at the time, and was crucial for a legal case around distracted driving. [David’s] tools in his investigation were YateBTS (a cellular network simulator), SimTrace2 (pictured above), and old reliable Wireshark. Since the number isn’t a specific phone number and is not reachable from the public phone network, it must be a unique number inside AT&T processed by one particular AT&T SMSC (Short Message service center). The SMSC in question is in Atlanta and isn’t a typical texting center, so it must have some particular purpose. The message’s payload is raw binary rather than text, and [David] has done a pretty good job of decoding the majority of the format.

The most exciting revelation in this journey is that the phone (in the traditional sense) does not send this message. The processor on the phone does not know this message and executes no code to send it. Instead, the SIM card itself sends it. The SIM card is connected directly to the baseband processor on the phone, and the baseband polls the sim every so often, asking for any commands. One of those commands is an SMS (though many other commands have worrying consequences).

The SMS that [David] was chasing is triggered whenever a SIM detects a new IMEI, and the message lets the network know what about the previous and current IMEI. However, in the case of this message, it was unlikely that the SIM changed phones, so what happened? After some additional lab work and the deposition of an AT&T employee, [David] showed that a baseband firmware update would also trigger this SMS.

It’s a fascinating journey into the fragmented world of a smartphone’s minds and [David] does a fantastic job on the writeup. If you’re interested in sniffing wireless accessories, you will enjoy this soundbar’s wireless protocol laid bare.

roetz shows off his multi hot end 3d printer

Maximum Throughput Benchie

Have you ever needed to make a few hundred of something quickly? [Roetz 4.0] has got you covered with his massively parallel entry into the SpeedBoatRace competition.

The idea behind the SpeedBoatRace is how quickly you can print a Benchy — the little boat that is used as a test print for a 3d printer. Speeding up a print is quite tricky as it means moving the head quicker and giving layers less time to deposit and a whole other host of problems. So [Roetz] took a page out of a CPU designer’s playbook, and rather than increasing the latency, he raised the throughput. The original plan was for 20 hot ends, but due to cooling issues, that had to be reduced to 18. Perhaps even more impressive than the scale of the machine is that the only off-the-shelf parts on it are the fans for cooling. Everything else is printed or machined by [Roetz] himself. The whole run was completed in less than an hour, which technically gives him a sub 3.6 minute time per benchy, even accounting for a few that failed.

This isn’t [Roetz’s] first custom 3d printer. He turned a CMM into a 3d printer a while back that offered incredible accuracy across a large build area. Thanks [Jan Roetz] for sending this one in! Video after the break.

Continue reading “Maximum Throughput Benchie”

Belgian Railway Time For Your Home

Some of the 20th century’s most iconic design and typography came to us through public signage in the various national railways of Europe. Were you to think of a Modernist clock face for example, the chances are that the prototype for your image hangs somewhere in one of the continent’s great railway terminals. If you don’t fancy getting on a train to see your favourite public timepiece, then maybe [EBP Controller] has a treat for you, with a 3D-printed double-faced Belgian railway station clock.

Behind the scenes the mechanism is simpler than appearances might lead the observer to believe, with each set of hands driven through a single gear to a motor. Controlling it all is an ESP8266, which is able to synchronise the clock exactly to an NTP server. It appears at first sight to have an unnecessarily large quantity of motors, but considering that there are two faces each with three hands the six motors each have a use. So while the real thing might require a heist from the SNCB, at least modernist clock fans can now have their own.