Ancient Pocket Computer Gets A USB-C Upgrade

Remember the ZEOS Pocket PC? Perhaps you knew it as the Tidalwave PS-1000. Either way, it was a small clamshell computing device that was first released all the way back in 1992, and perhaps most accurately known as a DOS-based palmtop. Over at [Robert’s Retro] on YouTube, one of these fine devices was put through a repair and a modern upgrade program.

[Robert] educates us on the basics of the machine as he sets about the routine repairs so familiar to anyone in the retrocomputing scene. The first order of business is to clean up the damage to the battery compartment, which had suffered corrosion from leaking AA batteries. We get a solid look inside, and a walk-through on how to modify the device to run off USB-C power. It’s as simple as wiring up a small power module PCB and integrating that into the case, but it’s a neat mod done well—and it makes toying with the device much easier in 2025.

[Robert] has a cause he’s pursuing, though, when it comes to these old palmtops. He’s trying to identify the name of the oddball connectors these things used for the parallel and serial interfaces, and ideally, a source for the same. If you’ve got a tip on that, drop it in the comments.

Funnily enough, these things were cloned like crazy back in the day, so you might even find one under another name in your retro travels. They might be old, but somehow, it’s impossible for a piece of tech to feel old when you’re hooking it up with a USB-C port. We’ve featured [Robert’s] work before, too!

Continue reading “Ancient Pocket Computer Gets A USB-C Upgrade”

This Week In Security: DeepSeek’s Oopsie, AI Tarpits, And Apple’s Leaks

DeepSeek has captured the world’s attention this week, with an unexpected release of the more-open AI model from China, for a reported mere $5 million training cost. While there’s lots of buzz about DeepSeek, here we’re interested in security. And DeepSeek has made waves there, in the form of a ClickHouse database unintentionally opened to the world, discovered by the folks from Wiz research. That database contained chat history and log streams, and API keys and other secrets by extension.

Finding this database wasn’t exactly rocket science — it reminds me of my biggest bug bounty win, which was little more than running a traceroute and a port scan. In this case it was domain and sub domain mapping, and a port scan. The trick here was knowing to try this, and then understanding what the open ports represented. And the ClickHouse database was completely accessible, leaking all sorts of sensitive data. Continue reading “This Week In Security: DeepSeek’s Oopsie, AI Tarpits, And Apple’s Leaks”

A History Of Copper Pours

If you compare a modern PCB with a typical 1980s PCB, you might notice — like [lcamtuf] did — that newer boards tend to have large areas of copper known as pours instead of empty space between traces. If you’ve ever wondered why this is, [lcamtuf] explains.

The answer isn’t as simple as you might think. In some cases, it is just because the designer is either copying the style of a different board or the design software makes it easy to do. However, the reason it caught on in the first place is a combination of high-speed circuitry and FCC RF emissions standards. But why do pours help with unintentional emissions and high-speed signals?

Continue reading “A History Of Copper Pours”

Handy Online Metric Screw, Nut, And Washer Generator

For those times when you could really use a quick 3D model, this metric screw generator will do the trick for screws between M2 and M16 with matching nuts and washers. Fastener hardware is pretty accessible, but one never knows when a 3D printed piece will hit the spot. One might even be surprised what can be usefully printed on a decent 3D printer at something like 0.08 mm layer height.

Behind the scenes, [Jason]’s tool is an OpenSCAD script with a very slick web-based interface that allows easy customization of just about any element one might need to adjust, including fine-tuning the thread sizing. We’re fans of OpenSCAD here and appreciate what’s going on behind the scenes, but one doesn’t need to know anything about it to use the online tool.

Generated models can be downloaded as .3mf or .stl, but if you really need a CAD model you’re probably best off looking up a part and downloading the matching 3D model from a supplier like McMaster-Carr.

Prefer to just use the OpenSCAD script yourself, instead of the web interface? Select “Download STL/CAD Files” from the dropdown of the project page to download ScrewGenerator.scad for local use, and you’re off to the races.

Tensegrity construction with Adafruit led strands

The Jell-O Glow Tensegrity Toy You Didn’t Know You Needed

If you’re looking to add a pop of glowing whimsy to your workspace, check out this vibrant jiggly desk toy by [thzinc], who couldn’t resist the allure of Adafruit’s NOODS LED strands. [thzinc]’s fascination with both glowing LEDs and levitating tensegrity designs led to an innovative attempt to defy gravity once again.

The construction’s genius is all about the balance of tension across the flexible LED strands, with three red ‘arms’ and a blue ‘hanger’ arm supporting the central hub. [thzinc]’s early designs faced print failures, but by cleverly reorienting print angles and refining channel designs, he achieved a modular, sturdy structure. Assembly involved careful soldering, tension adjustments, and even a bit of temporary tape magic to perfect the wobbling equilibrium.

But, the result is one to applaud. A delightful, wobbly desk toy with a kind of a Jell-O vibe that dances to your desk’s vibrations while glowing like a mini neon sign. We’ve covered tensegrity constructions in the past, so with a little digging through our archives you’ll be able to find some unique variations to build your own. Be sure to read [thzinc]’s build story before you start. Feel free to combine the best out there, and see what you can bring to the table!

Continue reading “The Jell-O Glow Tensegrity Toy You Didn’t Know You Needed”

Patching Up Failing Hearts With Engineered Muscle Tissue

As the most important muscle in our body, any serious issues with our heart are considered critical and reason for replacement with a donor heart. Unfortunately donor hearts are rather rare, making alternatives absolutely necessary, or at the very least a way to coax the old heart along for longer. A new method here seems to be literally patching up a patient’s heart with healthy heart tissue, per the first human study results by [Ahmad-Fawad Jebran] et al. as published in Nature (as well as a partially paywalled accompanying article).

Currently, simple artificial hearts are a popular bridging method, which provide a patient with effectively a supporting pump. This new method is more refined, in that it uses induced pluripotent stem cells (iPS) from an existing hiPSC cell line (TC1133) which are then coaxed into forming cardiomyocytes and stromal cells, effectively engineered heart muscle (EHM). After first testing this procedure on rhesus macaque monkeys, a human trial was started involving a 46-year old woman with heart failure after a heart attack a few years prior.

During an operation in 2021, 10 patches of EHMs containing about 400 million cells each were grafted onto the failing heart. When this patient received a donor heart three months later, the removed old heart was examined and the newly grafted sections found to be healthy, including the development of blood vessels.

Although currently purely intended to be a way to keep people alive until they can get a donor heart, this research opens the tantalizing possibility of repairing a patient’s heart using their own cells, which would be significantly easier than growing (or bioprinting) an entire heart from scratch, while providing the benefit of such tissue patches grown from one’s own iPS cells not evoking an immune response and thus mitigating the need for life-long immune system suppressant drugs.

Featured image: Explanted heart obtained 3 months after EHM implantation, showing the healthy grafts. (Credit: Jebran et al., 2025, Nature)

Copper Candle Burns Forever… Just Add Fuel

[Zen Garden Oasis] wanted to heat and light a space using a candle. But candles aren’t always convenient since they burn down and, eventually, you must replace them. So he built copper candles using a common copper pipe and an old glass jar. Of course, the candle still takes fuel that you have to replace, but the candle itself doesn’t burn down.

The basic idea is that the copper tube holds a high-temperature carbon wick that stays saturated with fuel. The fuel burns, but the wick material doesn’t. The copper part is actually concentric with a 3/4-inch pipe mostly enclosing a 1/2-inch pipe.

Continue reading “Copper Candle Burns Forever… Just Add Fuel”