Fail Of The Week: Sonar Submersibility Sealing

For the last decade or so, [Jason] has wanted to build an underwater robot. Can you blame him? More recently, he’s been researching sonar sensing and experimenting with the relatively inexpensive HC-SR04 module. Since he had good luck getting it to work with a PC sound card and a Stellaris Launchpad, he figured it was time to try using it underwater.

Hydrophone research led him to the idea of submerging the sensor in mineral water oil to both seal it and couple it with the water. Unfortunately, the HC-SR04 only sends one pulse and waits for echo. Through the air, it reliably and repeatedly returned a small value. Once inside a pill bottle filled with mineral oil, though, it does something pretty strange: it fluctuates between sending back a very small value and an enormous value. This behavior has him stumped, so he’s going to go back to the Launchpad unless you can help him figure out what’s going on. Should he use a different method to seal it?


2013-09-05-Hackaday-Fail-tips-tileFail of the Week is a Hackaday column which runs every Thursday. Help keep the fun rolling by writing about your past failures and sending us a link to the story — or sending in links to fail write ups you find in your Internet travels.

Nerds Helping Sea Turtles

Sea Turtle Nest Monitoring Device

Life as a sea turtle can be rough. Not only are turtles trying to survive predators, destruction of habitat, fishing nets, and pollution, but only about 1% of hatchlings survive to face those challenges in the first place. Enter [Samuel Wantman] and a new volunteer hacker group called Nerds Without Borders, with their first order of business of creating an egg-shaped monitoring device for sea turtle nests.

Sea turtles are protected under the Endangered Species Act, which goes to great lengths to protect certain species from human activity. The ultimate goal of the project is to help people and sea turtles better coexist under this law by more accurately predicting hatching times. A suite of sensors and a cell network antenna are placed in a plastic “egg” that can be buried in a nest after a sea turtle lays the real eggs. The sensors detect vibrations within the eggs as the embryos grow, which is an indication that the tiny turtles are about to break free of their eggs and head for the open ocean!

Click past the break for more on this project.

Continue reading “Nerds Helping Sea Turtles”

Portal Turret Prop

3D Printed Portal Turret Searches And Destroys

Ah yes, Portal — one of the most iconic puzzle games from this past decade by Valve. [Yvo] just put the finishing touches on his fully 3D printed, working, Portal Turret. Well — it doesn’t have guns — but it does just about everything else!

This intricate prop replica has attention to detail written all over it. [Yvo’s] carefully designed it to actuate as close to the video game model as possible. Its eye and arms move, has a targeting laser and even features a camera for color based object tracking. You can also play around with it using a joystick — but it’s much more fun to leave on autonomous mode.

Because the whole thing is 3D printed, [Yvo] has also made up an Instructable for making your own, and according to him, it’s not that hard to build! This isn’t his first rodeo either, if you remember the awesome GlaDOS we shared last year — that’s his too.

Continue reading “3D Printed Portal Turret Searches And Destroys”

Sealed-System Bucket Loader Cleans Messes In Dangerous Places

[youtube=https://www.youtube.com/watch?v=XjHJ71SVop4&w=580]

 

Cleaning up after a disaster is hard and dangerous. But the ROEBL project is trying to make it substantially safer by removing the human operator from harm’s way. The Remote Operated Electric Bucket Loader had a big double-fenced, cement barrier play area set up at Maker Faire and [Justin Gray] walked us through the project which concluded with a demonstration of the hardware.

For now the operator does need to be on site to see what the loader is doing, but a first-person video setup is planned for the future. Still, removing the operator from the jarring experience of riding inside is an improvement. And the sealed nature of the electric and hydraulic systems mean that it can operate in areas inundated with liquids like water or oil.

The video above has a 90 second demonstration at the end (while we all laugh like children at what really was a giddy display of power being thrown about by a handheld controller). The ROEBL website has a gallery where you can see the conversion process that started with a standard diesel machine.

Searching For Makers In Washington DC

makeDC

Despite there being an inordinate amount of techies and tech companies in the Washington, DC/Northern Virginia area, there aren’t really that many hacker/makerspaces, or really anywhere else for tinkering, building, and generally futzing around with a soldering iron. [Zach] thought it was time for a change and is now organizing the second Make DC an informal get together to show off your latest projects and builds. Here’s the best part: Hackaday is coming, and we’re bringing some sweet swag.

Right now [Matt] has two talks lined up focused on bringing APIs into the physical world. There’s space for plenty more speakers, so if you have something to show off be sure to sign up.

The event is scheduled for Wednesday, March 19, 6:30 PM, half a block away from the Dupont Circle Metro station. Be there. You’ll get a sticker at least.

Researchers Create Synthetic Muscle 100 Times Stronger Than The Real Thing

synth-muscle-02-de

A team of researchers at the University of Texas at Dallas have come up with an ingenious way to make a low-cost, high strength, artificial muscle. Their secret? Fishing line. The study was just published today in the journal Science, and the best part is they describe how to recreate it at home.

To create it, the researchers take regular fishing line (polyethylene or nylon string) and twist it under tension until it curls up into a tightly formed spring. It can then be temperature treated to lock in this position.

When heated again, the plastic tries to untwist — the peculiar thing is, this causes the entire coil to compress — think of it as Chinese finger-trap. Polyethylene and nylon molecules also contract lengthwise when heated. It can contract up to about 49%, with as much pulling power as 100 times its equivalent human muscle in weight. This equates to about 5.3 kilowatts of mechanical work per kilogram of muscle weight — similar to the output of a jet engine.

Stick around to see the video of how to make it — we’re excited to see what you guys think up for project applications!

Continue reading “Researchers Create Synthetic Muscle 100 Times Stronger Than The Real Thing”

0.19 Leagues Under The Sea

ROV

[Doug] and [Kay] have been building a steel 70-foot sailboat for the last few years, and since it’s a little too cold to work outside their home/shop in Oklahoma, they’re bringing their projects inside for the winter. Until it warms up a bit, they’re working on an underwater ROV capable of diving to 3000 feet below the waves, maneuvering on the ocean floor, and sending video and side-scan sonar back to their homebuilt ship.

Like [Doug] and [Kay]’s adventures in shipbuilding, they’re documenting the entire build process of ROV construction via YouTube videos. The first video covers the construction of a pressure vessel out of a huge piece of 10″ ID, half inch wall steel pipe. The design of the ROV will look somewhat like a torpedo, towed by the ship with cameras pointing in all directions.

For communication with the surface everything is passing over a single Cat5 cable. They’re using an Ethernet extender that uses a twisted wire pair to bring Ethernet to the ocean bottom. With that, a few IP webcams relay video up to the ship and a simple Arduino setup allows for control of the ships thrusters.

The thrusters? Instead of an expensive custom solution they’re using off the shelf brushless motors for RC cars and planes. By potting the coils of a brushless outrunner motor, [Doug] and [Kay] found this solution makes an awful lot of sense; it’s cheap, fairly reliable, doesn’t require a whole lot of engineering, and most importantly cheap.

Bunch of videos below, or just check out [Doug] and [Kay]’s progress on their slightly out-of-date blog.

Continue reading “0.19 Leagues Under The Sea”