Zelda Engagement Ring Box Seals The Deal

Congratulations to [John Scancella] and his wife to be. Their recent engagement was aided by one of [John’s] projects. Since [Betsy] is a big fan of Zelda, he thought it would be fun to present the ring with the Zelda music playing in the background. He and a friend combined forces to build what you seen in this image.

The music is played by an Arduino with the help of a wave shield. This is pretty much a one-use item so battery life was never a concern. A magnetic switch was used to detect when the box was opened and start the music playing.

You can see the full-sized images after the break, but we can tell that [John] went with a traditional engagement ring. We’re still waiting to see if 3D printed rings are going to catch on in the geek scene. If you just can’t give her anything but precious metal there’s always the idea of encoding messages on the band itself.

Continue reading “Zelda Engagement Ring Box Seals The Deal”

Genetic Research On The Cheap

When you think of DIY hardware, genetic research tools are not something that typically comes to mind. But [Stacey] and [Matt]’s OpenPCR project aims to enable anyone to do polymerase chain reaction (PCR) research on the cheap.

PCR is a process that multiplies a specific piece of DNA a few million times. It can be used for many purposes, including DNA cloning and DNA fingerprinting for forensics. PCR is also used for paternity testing.

The process involves baking the DNA at specific temperatures for the right amount of time. The DNA is first denatured, to split the helix into individual strands. Next, the temperature is lowered and primers are bound to the strands. Finally, another temperature is used to allow the polymerase to duplicate the DNA. This process is repeated to multiply the DNA.

The OpenPCR uses an Arduino to control a solid state relay. This relay provides power to two large resistors that act as heaters. A MAX31855 is used to read a thermocouple over SPI and provide feedback for the system. A computer fan is used to cool the device down.

A milled aluminium sample holder houses and heats the samples during cycling. The laser cut, t-slot construction case features some helix art, and houses all of the components. It will be interesting to see what applications this $85 PCR device can perform.

Via Adafruit

Researching Cosmic Rays With Cloud Chambers

In the late 1940s, the US Naval Research Laboratory used a few German-built V2 rockets to study cosmic rays from above Earth’s atmosphere. To do this, a nitrogen-powered cloud chamber was fitted inside the nose cone of these former missiles, sent aloft, and photographed every 25 seconds during flight. When [Markus] read about these experiments, he thought it would be an excellent way to study cosmic rays from a high altitude balloon and set about building his own Wilson cloud chamber.

Cloud chambers work by supersaturating the atmosphere with water or alcohol vapor. This creates a smoky cloud inside the chamber, allowing for the visualization of radiation inside the cloud. Usually the clouds in these chambers are made in a very cold environment using dry ice, but rapidly decreasing the air pressure in the chamber will work just as well, as [Markus] discovered.

[Markus]’s small cloud chamber uses a CO2 cartridge to provide the pressure in the cloud chamber before dumping the CO2 out of the chamber with the help of a solenoid valve.

In the video after the break, [Markus] demonstrates his cloud chamber by illuminating the cloud with a laser pointer and introducing a few alpha particles with a sample of Americium 241. It looks very cool, and seems to be useful enough to count cosmic rays aboard a balloon or amateur rocket.

Continue reading “Researching Cosmic Rays With Cloud Chambers”

Help Computer Vision Researchers, Get A 3d Model Of Your Living Room

Robots can easily make their way across a factory floor; with painted lines on the floor, a factory makes for an ideal environment for a robot to navigate. A much more difficult test of computer vision lies in your living room. Finding a way around a coffee table and not knocking over a lamp present a huge challenge for any autonomous robot. Researchers at the Royal Institute of Technology in Sweden are working on this problem, but they need your help.

[Alper Aydemir], [Rasmus Göransson] and Prof. [Patric Jensfelt] at the Centre for Autonomous Systems in Stockholm created Kinect@Home. The idea is simple: by modeling hundreds of living rooms in 3D, the computer vision and robotics researchers will have a fantastic library to train their algorithms.

To help out the Kinect@Home team, all that is needed is a Kinect, just like the one lying disused in your cupboard. After signing up on the Kinect@Home site, you’re able to create a 3D model of your living room, den, or office right in your browser. This 3D model is then added to the Kinect@Home library for CV researchers around the world.

Recovering From A Seagate HDD Firmware Bug

Hard drive firmware is about the last place you want to find a bug. But that turned out to be the problem with [BBfoto’s] Seagate HDD which he was using in a RAID array. It stopped working completely, and he later found out the firmware has a bug that makes the drive think it’s permanently in a busy state. There’s a firmware upgrade available, but you have to apply it before the problem shows its face, otherwise you’re out of luck. Some searching led him to a hardware fix for the problem.

[Brad Garcia] put together the tutorial which illustrates the steps needed to unbrick the 7200.11 hard drive with the busy state bug. The image in the lower right shows the drive with a piece of paper between the PCB and the connectors which control the head. This is necessary to boot the drive without it hanging due to the bug. From there he issues serial commands to put it into Access Level 2, then removes the cardboard for the rest of the fix.

In the tutorial [Brad] uses a serial-TTL converter. [BBfoto] grabbed an Arduino instead, using it as a USB-ttl bridge.

Bricking A Seagate Drive While Trying To Make It Work In An Xbox 360

If you’re looking to replace the hard drive in your Xbox 360 without just buying an official unit, you may be out of luck. There is a tool which will let you do it if you are using aWestern Digital drive as the replacement. But if your new drive is a Seagate this tool will not work. [Darth Circuit] set out to make his Seagate work in the Xbox 360, but his manual changes ended up bricking the drive because of just one little error.

The tool that does this with WD drives is called HddHackr. [Darth] started his quest by finding out what the program actually does. In order to stand in for the original drive the new one must have the same model number, serial number, LBA, and firmware revision. Once these values are changed in a binary file it is written to the drive at a specific location. He changed these values on the drive itself, and got pretty far. That is until he tried a new command which ended up locking him out of the drive. Right now it’s pretty much a brick but we hope someone can pick up where he left off and turn this work into something useful for others. Good luck!

[Vijay Kumar’s] TED Talk On The State Of Quadcopter Research

[Vijay Kumar] is a professor at the University of Pennsylvania and the director of the GRASP lab where research centering around autonomous quadcopters is being met with great success. If you were intrigued by the video demonstrations seen over the last few years, you won’t want to miss the TED talk [Dr. Kumar] recently gave on the program’s research. We touched on this the other week when we featured a swarm of the robots in a music video, but there’s a lot more to be learned about what this type of swarm coordination means moving forward.

We’re always wondering where this technology will go since all of the experiments we’ve seen depend on an array of high-speed cameras to give positional feedback to each bot in the swarm. The image above is a screenshot taken about twelve minutes into the TED talk video (embedded after the break). Here [Dr. Kumar] addresses the issue of moving beyond those cameras. The quadcopter shown on the projection screen is one possible solution. It carries a Kinect depth camera and laser rangefinder. This is a mapping robot that is designed to enter an unknown structure and create a 3D model of the environment.

The benefits of this information are obvious, but this raises one other possibility in our minds. Since the robots are designed to function as an autonomous swarm, could they all be outfitted with cameras, and make up the positional-feedback grid for one another? Let us know what you think about it in the comments section.

Continue reading “[Vijay Kumar’s] TED Talk On The State Of Quadcopter Research”