Friendly Flexible Circuits: The Cables

Flexible cables and flex PCBs are wonderful. You could choose to carefully make a cable bundle out of ten wires and try to squish them to have a thin footprint – or you could put an FFC connector onto your board and save yourself a world of trouble. If you want to have a lot of components within a cramped non-flat area, you could carefully design a multitude of stuff FR4 boards and connect them together – or you could make an FPC.

Flexible cables in particular can be pretty wonderful for all sorts of moving parts. They transfer power and data to the scanner head in your flat-bed scanner, for instance.  But they’re in fixed parts too.  If you have a laptop or a widescreen TV, chances are, there’s an flexible cable connecting the motherboard with one or multiple daughterboards – or even a custom-made flexible PCB. Remember all the cool keypad and phones we used to have, the ones that would have the keyboard fold out or slide out, or even folding Nokia phones that had two screens and did cool things with those? All thanks to flexible circuits! Let’s learn a little more about what we’re working with here.

FFC and FPC, how are these two different? FFC (Flexible Flat Cable) is a pre-made cable. You’ve typically seen them as white plastic cables with blue pieces on both ends, they’re found in a large number of devices that you could disassemble, and many things use them, like the Raspberry Pi Camera. They are pretty simple to produce – all in all, they’re just flat straight conductors packaged nicely into a very thin cable, and that’s why you can buy them pre-made in tons of different pin pitches and sizes. If you need one board to interface with another board, putting an FFC connector on your board is a pretty good idea.

Continue reading “Friendly Flexible Circuits: The Cables”

Vesuvius Challenge 2023 Grand Prize Awarded And 2024’s New Challenge

In the year 79 CE, a massive cloud of volcanic ash rained down on the Roman city of Herculaneum after an eruption of Mount Vesuvius. Along with the city of Pompeii, Herculaneum was subsequently engulfed and buried by a pyroclastic flow that burned everything in its path, including the scrolls in the library of what today is known as the Villa of the Papyri. After the charred but still recognizable scrolls were found in the 18th century, many fruitless attempts were made to recover the text hidden within these charred ruins, but not until 2023 did we get our first full glimpse at their contents, along with the awarding of the Vesuvius Challenge 2023.

We previously covered the run-up to this award, but with only a small fraction of the scrolls now read, there’s still a long way to go. This leads to the 2024 prize challenge, which sees teams strive to read 90% of scrolls 1-4 each, for a $100,000 award. The expectation is that with this ability, it should be possible to read all 800 scrolls known today, but as detailed in the Master Plan there is still more to come. Being able to scan and process scrolls faster and more efficiently is one of the biggest challenges, as is that of recovering any more scrolls that may be stuck in the mud at the Villa of the Papyri. As easy as it may sound to pull stuff out of the mud, archaeological excavations are expensive and time-consuming.

With time running out on how long both the recovered and still lost scrolls will last, it’s pertinent that we do not lose this opportunity to double our knowledge of historical texts from this era.

In Defense Of Anthropomorphizing Technology

Last week I was sitting in a waiting room when the news came across my phone that Ingenuity, the helicopter that NASA put on Mars three years ago, would fly no more. The news hit me hard, and I moaned when I saw the headline; my wife, sitting next to me, thought for sure that my utterance meant someone had died. While she wasn’t quite right, she wasn’t wrong either, at least in my mind.

As soon as I got back to my desk I wrote up a short article on the end of Ingenuity‘s tenure as the only off-Earth flying machine — we like to have our readers hear news like this from Hackaday first if at all possible. To my surprise, a fair number of the comments that the article generated seemed to decry the anthropomorphization of technology in general and Ingenuity in particular, with undue harshness directed at what some deemed the overly emotional response by some of the NASA/JPL team members.

Granted, some of the goodbyes in that video are a little cringe, but still, as someone who seems to easily and eagerly form attachments to technology, the disdain for an emotional response to the loss of Ingenuity perplexed me. That got me thinking about what role anthropomorphization might play in our relationship with technology, and see if there’s maybe a reason — or at least a plausible excuse — for my emotional response to the demise of a machine.

Continue reading “In Defense Of Anthropomorphizing Technology”

Schematics, For A Modern Flagship Phone

The mobile phone is an expensive and often surprisingly fragile device, whose manufacturers are notorious for making them as difficult to repair as possible. Glued-together cases and unreplaceable batteries abound, and technical information is non-existent. But amongst all that there’s one manufacturer with a different approach — Fairphone. Case in point, they’ve released the full service guide including schematics for their flagship Fairphone 5.

Fairphone’s selling point is the repairability and internal accessibility of their products and of course they’ve made hay with this as a marketing opportunity. But aside from that, it’s a fascinating chance to look in-depth at a modern smartphone from the inside out. We see the next-level PCB layout and how everything is so neatly packed into the minimum space, all without resorting to a heat gun.

It’s great to have another hackable phone, and fair play to Fairphone for releasing all this stuff, but perhaps the most interesting part from where we’re sitting is how and where this phone is being sold. There have been hackable phones before, for many the Pinephone will spring to mind, but they have always been sold to an audience who buy to hack. Here in Europe where this is being written, the Fairphone is being sold as a consumer device. It won’t shake Apple or Samsung from their perches, but for a hackable device to be so generally available to those who wish to do things with it can never be a bad thing.

We took a quick look at Fairphone back in 2015, when they launched.

Harbor Freight And LEGO PCB Vise Is Cheap And Effective

It doesn’t take much chasing things around the bench with a soldering iron to appreciate the value of good work holding. And don’t get us started on those cheap “helping hands” alligator clip thingies; they’re somehow worse than no work holding. Isn’t there a better way?

Maybe, judging by [Paul Bryson]’s idea for a dirt cheap PCB vise. It’s a pretty clever design that’ll have you heading to Harbor Freight, or whatever the moral equivalent is in your location, where you’ll pick up a small ratcheting bar clamp. [Paul] used a 4″ (10 cm) clamp; that which looks fine for a wide range of boards, but we suppose you could go bigger if you like. You could also stop there and just clamp your PCBs in the plastic jaws, but [Paul] adorned the jaws with swiveling arms made from LEGO Technic pieces, of all things. Rubber grommets slipped onto Technic pegs go into the holes on the beam to hold the PCB edges firmly, while the swiveling action adapts to odd-shaped boards.

To our mind, the biggest advantage to this design other than cost is how low it holds the PCB — a decided advantage while working under the microscope. Don’t have any Technics parts close to hand? No worries, 3D printed parts could easily stand in, and maybe even improve the design. [Paul] also shows off a substitute for the Technics beam rendered in PCB material, which would reduce the height of the workpiece over the bench even more.

We’ve seen a lot of PCB vises come and go, using everything from scrap wood to 3D printed compliant mechanisms. But we doubt you’ll find anything more cost-effective than [Paul]’s design.

Recreating The Quadrophonic Sound Of The 70s

For plenty of media center PCs, home theaters, and people with a simple TV and a decent audio system, the standard speaker setup now is 5.1 surround sound. Left and right speakers in the front and back, with a center speaker and a subwoofer. But the 5.1 setup wasn’t always the standard (and still isn’t the only standard); after stereo was adopted mid-century, audio engineers wanted more than just two channels and briefly attempted a four-channel system called quadrophonic sound. There’s still some media from the 70s that can be found that is built for this system, such as [Alan]’s collection of 8-track tapes. These tapes are getting along in years, so he built a quadrophonic 8-track replica to keep the experience alive.

The first thing needed for a replica system like this is digital quadrophonic audio files themselves. Since the format died in the late 70s, there’s not a lot available in modern times so [Alan] has a dedicated 8-track player connected to a four-channel audio-to-USB device to digitize his own collection of quadrophonic 8-track tapes. This process is destructive for the decades-old tapes so it is very much necessary.

With the audio files captured, he now needs something to play them back with. A Raspberry Pi is put to the task, but it needs a special sound card in order to play back the four channels simultaneously. To preserve the feel of an antique 8-track player he’s cannibalized parts from three broken players to keep the cassette loading mechanism and track indicator display along with four VU meters for each of the channels. A QR code reader inside the device reads a QR code on the replica 8-track cassettes when they are inserted which prompts the Pi to play the correct audio file, and a series of buttons along with a screen on the front can be used to fast forward, rewind and pause. A solenoid inside the device preserves the “clunk” sound typical of real 8-track players.

As a replica, this player goes to great lengths to preserve the essence of not only the 8-track era, but the brief quadrophonic frenzy of the early and mid 70s. There’s not a lot of activity around quadrophonic sound anymore, but 8-tracks are popular targets for builds and restorations, and a few that go beyond audio including this project that uses one for computer memory instead.

Continue reading “Recreating The Quadrophonic Sound Of The 70s”

Evidence For Graphite As A Room Temperature Superconductor

Magnetization M(H) hysteresis loops measured for the HOPG sample, before and after 800 K annealing to remove ferromagnetic influences. (Credit: Kopelevich et al., 2023)
Magnetization M(H) hysteresis loops measured for the HOPG sample, before and after 800 K annealing to remove ferromagnetic influences. (Credit: Kopelevich et al., 2023)

Little has to be said about why superconducting materials are so tantalizing, or what the benefits of an ambient pressure, room temperature material with superconducting properties would be. The main problem here is not so much the ‘room temperature’ part, as metallic hydrogen is already capable of this feat, if at pressures far too high for reasonable use. Now a recent research article in Advanced Quantum Technologies by Yakov Kopelevich and colleagues provides evidence that superconducting properties can be found in cleaved highly oriented pyrolytic graphite (HOPG). The fact that this feat was reported as having been measured at ambient pressure and room temperature makes this quite noteworthy.

What is claimed is that the difference from plain HOPG is the presence of parallel linear defects that result from the cleaving process, a defect line in which the authors speculate that the strain gradient fluctuations result in the formation of superconducting islands, linked by the Josephson effect into Josephson junctions. In the article, resistance and magnetization measurements on the sample are described, which provide results that provide evidence for the presence of these junctions that would link superconducting islands on the cleaved HOPG sample together.

As with any such claim, it is of course essential that it is independently reproduced, which we are likely to see the results of before long. An interesting part of the claim made is that this type of superconductivity in linear defects of stacked materials could apply more universally, beyond just graphite. Assuming this research data is reproduced successfully, the next step would likely be to find ways to turn this effect into practical applications over the coming years and decades.