MCE Blaster Translates TTL For Modern(ish) Monitors

VGA isn’t much used anymore, but it’s not hard to get a hold of monitors with that input. How about the older standards like EGA, CGA, or MDA? Well, it’s good luck on eBay or at the recycling yard to get a period-appropriate monitor, but the bulky, fragile CRTs seem to have been less likely to survive than computers that drove them. That’s what [Scrap Computer]’s MCE Blaster is for: it sits betwixt the retrocomputer’s TTL output and the VGA input of a (more) modern monitor, be it CRT or LCD.

Continue reading “MCE Blaster Translates TTL For Modern(ish) Monitors”

Folding Lamp Becomes A Tasty Reverb Tank

If you’re a musician and you want a reverb effect, there are lots of ways to go about it. You can use software plugins, all kinds of rack-mount effects, or pedals. Or, as [David] has done, you could go with a lamp.

[David’s] build is straightforward enough in concept—he just chose a relatively unconventional item to use as a reverb tank. The lamp might seem like an odd choice, but it actually does a decent job at resonating because of its metal construction and the multiple springs that tension the structure. [David] turns the lamp into a reverb by fitting it with a Vidsonix Ghost audio transducer to put sound into the structure—picture the magnetic driver of a loudspeaker without the cone fitted, and you get the idea. Piezo elements were then used as contact mics to pick up reverberations from the lamp itself. Everything was assembled with a bunch of lab stands that give the build a rather nice aesthetic. The reverb time isn’t particularly long, but the sound is hauntingly beautiful.

Continue reading “Folding Lamp Becomes A Tasty Reverb Tank”

Repurposing Dodgy Android TV Boxes As Linux Boxes

The fake H313 TV box SBC in all its glory. (Credit: Oleksii's Tech, YouTube)
The fake H313 TV box SBC in all its glory. (Credit: Oleksii’s Tech, YouTube)

Marketplaces and e-waste recycling centers are practically overflowing with the things: ARM-based streaming TV boxes that run some — usually very outdated and compromised — version of Android. While you can use them for their promised streaming purposes, they’re invariably poorly optimized and often lie about their true hardware specifications. Which leaves the most important question: can you install Linux on these SBCs and use them as a poor man’s Raspberry Pi alternative? The answer, according to [Oleksii’s Tech] on YouTube is ‘sorta’.

The commonly seen X96Q clone Android TV box that [Oleksii] bought for $10 is a good example. The clone advertises itself as based on a quad-core Cortex-A53 AllWinner H313 SoC, like the genuine X96Q, but actually has a Rockchip RK3229 inside with correspondingly far lower performance. After you have determined what the actual hardware inside the box is, you can get a copy of Armbian for that particular SoC. Here, the Rk322x-box minimal image was used, with the box booting straight off an SD card. Some Android TV boxes require much more complicated methods to even boot off external media, so this was a lucky break.

Continue reading “Repurposing Dodgy Android TV Boxes As Linux Boxes”

Is This The Last PCB You’ll Ever Buy?

Breadboards are great, but as the world moves more and more to having SMD as a standard, prototyping straight PCBs is becoming more common. If you’re mailing off to China for your PCBs, it’s shockingly quick for what it is, but a one-week turnaround is not “rapid prototyping”. [Stephen Hawes] has been on a quest on his YouTube channel for the ideal rapid-prototyping PCB solution, and he thinks he’s finally got it.

Now, if you’re only doing single-layer PCBs, this is a solved problem. You can mechanically mill, or laser cut, or chemically etch your way to PCB perfection, far faster than the Chinese fabs can get you a part. If you want a double-sided board, however, vias are both a pain in the keister to do yourself, and a rate-limiting step.

[Stephen Hawes] hit on the idea of buying a bulk set of PCBs from the usual vendors. The boards will be simple copper pours with vias in a grid with just a bit of etching. PCB Vendors are good at that, after all, and it’s not going to cost much more than raw copper. [Stephen] then uses the template of this “viagrid” board to lay out the circuit he’s prototyping, and it’s off to the races. Continue reading “Is This The Last PCB You’ll Ever Buy?”

3D Printering: Liquid-Filled Filament Was Not On Our Bingo Card

[Prusa] have a number of announcements, and one of the more unusual ones is that liquid printing is coming to the Prusa XL. Specifically, printing in real, heat-resistant silicone (not a silicone-like plastic) is made possible thanks to special filament and a special toolhead. It’s the result of a partnership with Filament2, and the same process could even be used to print with other liquids, including chocolate.

Look closely and you will see the detail in the nozzle, which mixes the two-part formula.

The process is as unusual as it is clever. The silicone is a two-part formula, but there is no reservoir or pump involved. Instead, there are two filaments, A and B. When mixed, they cure into solid silicone.

What is unusual is that these filaments have a liquid core. Upon entering the extruder, the outer sheath is cut away, and the inner liquid feeds into a mini mixing nozzle. The nozzle deposits the mixed silicone onto the print, where it cures. It isn’t clear from the demo where the stripped outer casing goes, but we assume it must get discarded or is possibly stowed temporarily until it can be removed.

Liquid-core filament is something we certainly didn’t have on our bingo card, but we can see how it makes sense. A filament format means the material can be handled, fed, and deposited precisely, benefiting from all of the usual things a filament-based printer is good at doing.

What’s also interesting is that the liquid toolhead can co-exist with other toolheads on the XL; in fact, they make a point of being able to extrude silicone as well as the usual thermoplastics into the same print. That’s certainly a trick no one else has been able to pull off.

There are a few other announcements as well, including a larger version of their Core One printer and an open-source smart spool standard called OpenPrintTag, a reusable and reprogrammable NFC insert for filament spools that gives you all of the convenience of automating color and material reading without the subtle (or overt) vendor lock-in that comes with it.

Watch a demo of the new silicone extruder in the video, embedded just under the page break. The new toolhead will be 1,009 USD when it launches in early 2026.

Continue reading “3D Printering: Liquid-Filled Filament Was Not On Our Bingo Card”

Does 3D-Printed Foam Make Good Custom Tires?

Wouldn’t it be nice to 3D print an entire custom tire for small robots? It sure would, so [Angus] of [Maker’s Muse] decided to investigate whether nifty new filaments like expanding TPU offer anything new in this area. He did more than just print out a variety of smooth tires; he tested each with a motorized platform attached to a load cell, driving on a dusty sheet of MDF to simulate the average shop floor, or ant weight combat robot arena.

Why bother making your own wheels? As [Angus] points out, when one is designing their own robots from scratch, it’s actually quite difficult to find something off the shelf that is just the right size. And even if one does find a wheel that is just right, there’s still the matter of fitting it to the shaft. Things would be so much easier if one could simply 3D print both wheel and tire in a material that performs well.

Like TPU, but squishier.

Here’s what he found: Siraya Tech’s TPU air filament (about 70A on the Shore hardness scale) performed the best. This is TPU plus a heat-activated additive that foams up during extrusion, resulting in a flexible print that looks and feels more like foam than usual TPU. It makes a promising tire that performs as well as it looks. Another expanding filament, PEBA air (also from Siraya Tech) didn’t look or perform as well, but was roughly in the same ballpark.

Both performed better than the classic DIY options of 3D-printed plain TPU, or laser-cut EVA foam. It’s certainly a lot less work than casting custom tires.

What about adding a tread pattern? [Angus] gave it a try. Perhaps unsurprisingly, a knobby tire has worse traction compared to a smooth tire on smooth MDF. But sometimes treads are appropriate, and as [Angus] points out, if one is 3D printing tires then adding treads comes at essentially zero cost. That’s a powerful ability.

Even if you are not interested in custom wheels, that foaming TPU filament looks pretty nifty. See for yourself in the video, embedded just below. If you find yourself finding a good use for it, be sure to drop us a tip!

Continue reading “Does 3D-Printed Foam Make Good Custom Tires?”

2025 Component Abuse Challenge: A Piezo Disk Powers A Transmitter

A piezo disk transducer is a handy part for reproducing beeps and boops, and can also function as a rudimentary microphone. Being a piezoelectric element, it can also generate usable power. Enough to run a radio transmitter? [b.kainka] is here to find out, with what may be the simplest possible transmitter circuit.

The active element in the circuit, such as it is, comes from a crystal. This functions as an extremely stable and high Q tuned circuit. When excited by a pulse of electricity, the circuit will carry oscillations in a similar manner to a bell ringing until the pulse is exhausted. A small lever fashioned from a piece of wire supplies the voltage by flexing the piezo disk and a contact, a diode discharges the reverse voltage as the disk returns to shape, and a small capacitor provides an AC path to ground. It works, if a small pulse of very low-power RF near the crystal’s frequency can be described as working.

It may not be the most practical transmitter, but it’s certainly something we’ve not seen before. It’s part of our 2025 Component Abuse Challenge, for which you still have time to make an entry yourself if you have one.