This week, Jonathan Bennett, Doc Searls, and Jeff Massie talk about Deepseek, technical solutions to Terms of Service abuse, and more!
Continue reading “FLOSS Weekly Episode 818: I Don’t Care About The Roman Empire”
This week, Jonathan Bennett, Doc Searls, and Jeff Massie talk about Deepseek, technical solutions to Terms of Service abuse, and more!
Continue reading “FLOSS Weekly Episode 818: I Don’t Care About The Roman Empire”
Bambu Labs have been in the news lately. Not because of the machines themselves, but because they are proposing a firmware change that many in our community find restricts their freedom to use their own devices.
What can be done? [Joshua Wise] gave a standout talk on the Design Lab stage at the 2024 Hackaday Superconference where he told the tale of his custom firmware for the Bambu X1 Carbon. He wasn’t alone here; the X1 Plus tale involves a community of hackers working on opening up the printer, but it’s also a tale that hasn’t ended yet. Bambu is striking back. Continue reading “Supercon 2024: Joshua Wise Hacks The Bambu X1 Carbon”
Though it is many decades since paper tape was commonly used as a data input or storage medium, it still holds a fascination for many who work with computers. Over the years we’ve featured more than one paper tape related project, and the latest to come out way is [ColemanJW2]’s 8-bit ASCII paper tape generator.
It’s natural to expect when talking about a paper tape generator that a machine of some type will emerge, probably with a large reel of tape, a whirring mechanical punch, and a big box of paper confetti. This one however is different, because it exists in software and produces an SVG file to cut the tape with a laser cutter. Common workshop equipment in 2025, but the stuff of science fiction when paper tape was current.
The software is a Python script, which has a friendly GUI. It applies 8-bit ASCII to the tape, and supports control codes and ANSI escape sequences. There’s a very short demonstration video of a tape being cut, which we’ve placed below the break.
If you make any tapes this way, see if you can find a paper tape event badge to read them.
Occasionally, we get a tip for a project that is so compelling that we just have to write it up despite lacking details on how and why it was built. Alternatively, there are other projects where the finished product is cool, but the tooling or methods used to get there are the real treat. “Homeokinesis,” a kinetic art installation by [Ricardo Weissenberg], ticks off both those boxes in a big way.
First, the project itself. Judging by the brief video clip in the reddit post below, Homeokinesis is a wall-mounted array of electromagnetically actuated cards. The cards are hinged so that solenoids behind them flip the card out a bit, making interesting patterns of shadow and light, along with a subtle and pleasing clicking sound. The mechanism appears to be largely custom-made, with ample use of 3D printed parts to make the frame and the armatures for each unit of the panel.
Now for the fun part. Rather than relying on commercial solenoids, [Ricardo] decided to roll his own, and built a really cool CNC machine to do it. The machine has a spindle that can hold at least eleven coil forms, which appear to be 3D printed. Blank coil forms have a pair of DuPont-style terminal pins pressed into them before mounting on the spindle, a job facilitated by another custom tool that we’d love more details on. Once the spindle is loaded up with forms, magnet wire feeds through a small mandrel mounted on a motorized carriage and wraps around one terminal pin by a combination of carriage and spindle movements. The spindle then neatly wraps the wire on the form before making the connection to the other terminal and moving on to the next form.
The coil winder is brilliant to watch in action — however briefly — in the video below. We’ve reached out to [Ricardo] for more information, which we’ll be sure to pass along. For now, there are a lot of great ideas here, both on the fabrication side and with the art piece itself, and we tip our hats to [Ricardo] for sharing this.
Continue reading “Cool Kinetic Sculpture Has Tooling Secrets To Share”
Did you ever hear of a satellite called Parcae (pronounced like park-eye)? If you haven’t, don’t feel bad—it was, after all, a top-secret project only revealed in July 2023. [Ivan Amato] not only heard about it, but also wrote a fascinating peek into the cloak-and-dagger world of cold-war spy satellites for this month’s IEEE Spectrum.
According to [Ivan], the satellite helped the United States to keep track of Russian submarines and was arguably the most capable orbiting spy platform ever. Or, at least, that we get to hear about.
Transition-metal dichalcogenides (TMDs) are the subject of an emerging field in semiconductor research, with these materials offering a range of useful properties that include not only semiconductor applications, but also in superconducting material research and in supercapacitors. A recent number of papers have been published on these latter two applications, with [Rui] et al. demonstrating superconductivity in (InSe2)xNbSe2. The superconducting transition occurred at 11.6 K with ambient pressure.
Two review papers on transition metal sulfide TMDs as supercapacitor electrodes were also recently published by [Mohammad Shariq] et al. and [Can Zhang] et al. showing it to be a highly promising material owing to strong redox properties. As usual there are plenty of challenges to bring something like TMDs from the laboratory to a production line, but TMDs (really TMD monolayers) have already seen structures like field effect transistors (FETs) made with them, and used in sensing applications.
TMDs consist of a transition-metal (M, e.g. molybdenum, tungsten) and a chalcogen atom (X, e.g. sulfur) in a monolayer with two X atoms (yellow in the above image) encapsulating a single M atom (black). Much like with other monolayers like graphene, molybdenene and goldene, it is this configuration that gives rise to unexpected properties. In the case of TMDs, some have a direct band gap, making them very suitable for transistors and perhaps most interestingly also for directly growing 3D semiconductor structures.
Heading image: Crystal structure of a monolayer of transition metal dichalcogenide.(Credit: 3113Ian, Wikimedia)
We’ve said it before: building one-offs is different from building at scale. Even on a small scale. There was a time when it was rare for a hobbyist to produce more than one of anything, but these days, access to cheap PC boards makes small production runs much more common. [VoltLog], for example, is selling some modules and found he was spending a lot of time testing the boards. The answer? A testing jig for his PC board.
Big factories, of course, have special machines for bulk testing. These are usually expensive. [VoltLog] found a place specializing in creating custom test jigs using 3D printing.
They also have some standard machines. He did have to modify his PCB to accommodate special test points. He sent the design files to the company, and they produced a semi-custom testing jig for the boards in about a month.