Is That Google In Your Pants?

Google’s Project Jacquard is tackling the age old gap between controlling your electronic device and touching yourself. They are doing this by weaving conductive thread into clothing in the form of a touch pad. In partnership with Levi Strauss & Co., Google has been designing and producing touch interfaces that are meant to be used by developers however they see fit.

touch-sensitive-jeans-thumbThe approach that Project Jacquard has taken from a hardware standpoint is on point. Rather than having an end user product in mind and design completely towards that goal, the project is focused on the interface as its product. This has the added benefit of endless varieties of textile interface possibilities. As stated in the video embedded after the break, the conductive touch interface can be designed as a visibly noticeable difference in material or seamlessly woven into a garment.

As awesome as this new interface may seem there are some things to consider:

  • Can an unintentional brush with another person “sleeve dial” your boss or mother-in-law?
  • What are the implications of Google putting sensors in your jeans?
  • At what point is haptic feedback inappropriate? and do we have to pay extra for that?

We’ve covered e-textiles before from a conductive thread and thru hole components approach to electro-mechanical implementations.

Continue reading “Is That Google In Your Pants?”

Build An AM Radio Transmitter From A CPLD

[Alex Lao] has been playing around with the CPLD-like parts of a PSoC. Which is to say, he’s been implementing simple logic functions “in hardware” in software. And after getting started with the chip by getting accustomed to the different clock sources, he built a simple AM radio that transmits at 24 MHz.

The device that [Alex] is learning on is a Cypress PSoC 5LP, or more specifically their (cheap) prototyping kit for the part. The chip itself is an ARM microprocessor core with a CPLD and some analog tidbits onboard to make interfacing the micro with the outside world a lot easier. [Alex] doesn’t even mess around with the microprocessor, he’s interested in learning the CPLD side of things.

PRS-CircuitHe starts off with a 24 MHz carrier and a 1 kHz tone signal, and combines them with a logical AND function. When the tone is on, the carrier plays through; that’s AM radio at its most elemental. Everything is logic (square waves) so it’s a messy radio signal, but it’ll get the job done.

Adding a multiplexer up front allows [Alex] to play two tones over his “radio” station. Not bad for some simple logic, and a fantastic Hello World project for a CPLD. We can’t wait to see what [Alex] is up to next!

If you’re interested in getting your feet wet with either CPLDs in general or a CPLD + micro system like Cypress’s, the development kit that [Alex] is using looks like a cheap and painless way to start. (Relatively speaking — PSoCs are a step or two up a steep learning curve from the simpler 8-bit micros or an Arduino.) Hackaday’s own [Bil Herd] has a video on getting started with another member of the Cypres PSoC family, so you should also check that out.

Avoid Procrastination With This Phone Lock Box

Smart phones are great. So great that you may find yourself distracted from working, eating, conversing with other human beings in person, or even sleeping. [Digitaljunky] has this problem (not surprising, really, considering his name) so he built an anti-procrastination box. The box is big enough to hold a smart phone and has an Arduino-based time lock.

The real trick is making the box so that the Arduino can lock and unlock it with a solenoid. [Digitaljunky] doesn’t have a 3D printer, so he used Fimo clay to mold a custom latch piece. A digital display, a FET to drive the solenoid, and a handful of common components round out the design.

Continue reading “Avoid Procrastination With This Phone Lock Box”

Act Now And Receive The Prong Saver For Only $0.00!

Well, actually, you can’t buy this. But for [TVmiller’s] latest project he decided to have some fun with the video — so he made an infomercial for it.

Called the Prong Saver, the device clips onto any appliance’s electrical cord to help prevent you from accidentally pulling too hard and bending the electrical prongs. It’s basically a cord-tension alarm. The question is — can you hear it over the vacuum cleaner?

And just because he could, it’s solar powered. Because why the heck not? He built it using scraps he found around the workshop. That included a solar powered LED key chain, a small piezo speaker, an eyebolt and a compression spring. Anyway, check out the commercial after the break. It had us in stitches.

Continue reading “Act Now And Receive The Prong Saver For Only $0.00!”

Impedance Tomography Is The New X-Ray Machine

Seeing what’s going on inside a human body is pretty difficult. Unless you’re Superman and you have X-ray vision, you’ll need a large, expensive piece of medical equipment. And even then, X-rays are harmful part of the electromagnetic spectrum. Rather than using a large machine or questionable Kryptonian ionizing radiation vision, there’s another option now: electrical impedance tomography.

[Chris Harrison] and the rest of a research team at Carnegie Mellon University have come up with a way to use electrical excitation to view internal impedance cross-sections of an arm. While this doesn’t have the resolution of an X-ray or CT, there’s still a large amount of information that can be gathered from using this method. Different structures in the body, like bone, will have a different impedance than muscle or other tissues. Even flexed muscle changes its impedance from its resting state, and the team have used their sensor as proof-of-concept for hand gesture recognition.

This device is small, low power, and low-cost, and we could easily see it being the “next thing” in smart watch features. Gesture recognition at this level would open up a whole world of possibilities, especially if you don’t have to rely on any non-wearable hardware like ultrasound or LIDAR.

Your First GNU Radio Receiver With SDRPlay

Although GRC (the GNU Radio Companion) uses the word radio, it is really a graphical tool for building DSP applications. In the last post, I showed you how you could experiment with it just by using a sound card (or even less). However, who can resist the lure of building an actual radio by dragging blocks around on a computer screen?

For this post and the accompanying video, I used an SDRPlay. This little black box has an antenna jack on one end and a USB port on the other. You can ask it to give you data about a certain area of the RF spectrum and it will send complex (IQ) data out in a form that GRC (or other DSP tools) can process.

The SDRPlay is a great deal (about $150) but if you don’t want to invest in one there are other options. Some are about the same price (like the HackRF or AirSpy) and have different features. However, you can also use cheap TV dongles, with some limitations. The repurposed dongles are not as sensitive and won’t work at lower frequencies without some external help. On the other hand, they are dirt cheap, so you can overlook a few little wrinkles. You just can’t expect the performance you’ll get out of a more expensive SDR box. Some people add amplifiers and converters to overcome these problems, but at some point it would be more cost effective to just spring for a more expensive converter.

Continue reading “Your First GNU Radio Receiver With SDRPlay”

SprayPrinter Paints Your Wall, One Pixel At A Time

SprayPrinter is a neat idea. You download a cellphone app, point the camera at a wall, and sweep the wall with a spray can fitted with a (Bluetooth? WiFi?) remote-controlled valve. The phone knows where the nozzle is, and sprays a dot whenever it needs to “paint” the picture of your choosing on the wall.

sprayprinter-estonia-designboom-002-818x500While we’re not sure that we have the patience to paint our walls this way, it’s a cool effect. But even more, we love the idea of using the cellphone camera for location sensing. Many robotics applications do just this with an overhead camera.

Of course, we’d love more detail about how it’s done, but it’s not hard to guess that it’s either a bit of machine vision in the phone, or simpler still, that the spray-can housing has IR LEDs inside that the phone can lock onto. Indeed, the prototype version of the product shown here does look like it has an LED on the opposite side from the orange nozzle.

It wouldn’t be hard to take this to the next level, by adding enough IR LEDs that the camera in your phone can sense orientation as well as location. Heck, by measuring the distances between LEDs, you could probably even get a rough measure of depth. This could open up the use of different nozzles.

Thanks [Itay] for the tip! Some images courtesy SprayPrinter, via designboom.