Rad-Hard ARM Microcontrollers, Because Ceramic Components Are Just Cooler

If you’re building a cubesat, great, just grab a microcontroller off the shelf, you probably don’t need to worry about radiation hardening. If you’re building an experiment for the ISS, just use any old microcontroller. Deep space? That’s a little harder, and you might need to look into radiation tolerant and radiation hardened microcontrollers. Microchip has just announced the release of two micros that meet this spec, in both radiation-tolerant and radiation-hardened varieties.

The new devices are the SAMV71Q21RT (radiation-tolerant) and the SAMRH71 (rad-hard), both ARM Cortex-M7 chips running at around 300 MHz with enough RAM to do pretty much anything you would want to do with a microcontroller. Peripherals include CAN-FD and Ethernet-AVB, analog front-end controllers, and the usual support for I2C, SPI, and other standards. This chip does it in space, and comes in a ceramic quad flat package with gold lead frames. These are beautiful devices.

Microchip has an incredible number of space-rated, rad-hard hardware; this is mostly due to their acquisition of Atmel a few years ago, and yes, it absolutely is possible to build a rad-hard Arduino Mega using the chip, space rated.

Of course, there are very, very, very few people who would actually ever need a rad-hard microcontroller; I would honestly expect this to be relevant to only one or two people reading this, and they too probably got the press release. If you’ve ever wanted to build something that goes to space, and you’d like to over-engineer everything about it, you now have the option for an ARM Cortex-M7.

New Part Day: STM32F7, An ARM Cortex-M7

It was announced last year, but ST is finally rolling out the STM32F7, the first microcontroller in production that is based on the ARM Cortex-M7.

The previous go-to part from the ST catalog was the STM32F4, an extremely powerful chip based on the ARM Cortex M4 processor. This chip was incredibly powerful in its time, and is still a respectable choice for any application that needs a lot of horsepower, but not a complete Linux system. We’ve seen the ~F4 chip pump out 800×600 VGA, drive a thermal imaging camera, and put OpenCV inside a webcam. Now there’s a new, even more powerful part on the market, and the mind reels thinking what might be possible.

Right now there a few STM32F7 parts out, both with speeds up to 216MHz, Flash between 512k and 1MB, and 320kB of RAM. Peripherals include Ethernet, USB OTG, SPDIF support, and I²S. The most advanced chip in the line includes a TFT LCD controller, and a crypto processor on-chip. All of the chips in the STM32F7 line are pin compatible with the STM32F4 line, with BGA and QFP packages available.

As with the introduction of all of ST’s microcontrollers, they’re rolling out a new Discovery board with this launch. It features Ethernet, a bunch of audio peripherals, USB OTG, apparently an Arduino-style pin layout, and a 4.3 inch, 480×272 pixel LCD with capacitive touch. When this is available through the normal distributors, it will sell for around $50. The chips themselves are already available from some of the usual distributors, for $17 to $20 in quantity one. That’s a chunk of change for a microcontroller, but the possibilities for what this can do are really only limited by an engineer’s imagination.