Disappointed in the lack of proper VR games and the current technology, [Jonas Hjohlman] and some friends set out to make their own. They decided to go big or go home — and built a device to let them ski in the third person.
We’ve seen this done as a proof of concept for walking around (and getting dizzy!) and even an attempt at third person driving which didn’t end well… We have to say, we’re pretty impressed at the Devil-may-care approach they take when trying to ski of all things — in the third person.
There’s not too much detail about the setup, but it looks like a standard pair of FPV goggles hooked up to their own wireless camera. A cameraman skier follows the player down the hill, and all the player sees is from behind.
Surprisingly, it goes a lot better than you think it would.
Continue reading “Real-Virtual 3rd Person Skiing — Your Broken Bones Are The Video Game”










But before that, it’s time to bid farewell to the cheeky little popup window that would deliver a warning message when using a board bearing the USB IDs of their former-partner-turned-competitor. We absolutely 
The projector itself is the HD25-LV, a 3500 Lumen model from Optima. the HD25-LV is capable of 1080p, though in this situation, brightness is much more important than resolution. [Mikeasaurus] mounted the projector along with a gel cell battery and 900 watt DC to AC inverter to power it. A mobile WiFi hotspot fills out the rooftop kit. Leaving an expensive setup like that on top of a car is a recipe for disaster – be it from rain, rocks, or theft. [Mikeasaurus] thought ahead and strapped his setup down inside a roof mounted cargo box. A plastic covered hole in the front of the box allows the projector to shoot down on the road while protecting its lens. We’d want to add a vent and fan to ensure that projector gets a bit of airflow as well.
The physical setup for this hack is fairly simple: a vat of water, a linear motor attached to a gripper, and a Kinect. The object is attached to the gripper. The Kinect measures its location and orientation. This data is applied to a 3D-scan of the object along with the desired texture map to be printed onto it. A program creates a virtual simulation of the printing process, outputting a specific pattern onto the film that accounts for the warping inherent to the process. The pattern is then printed onto the film using an ordinary inkjet printer.