Ice Clock

Binary Clock Fit For Queen Elsa’s Ice Palace

When life gives you lemons, you make lemonade. When life gives you freezing cold temperatures and a yard full of snow, you make binary clocks out of ice. At least that’s what [Dennis] does, anyway.

[Dennis’] clock is made from several cylindrical blocks of ice stacked on top of one another. There are six columns of ice blocks. The blocks were made by pouring water into empty margarine containers and freezing them. Once they were frozen, [Dennis] bore a 5/16″ hole into the bottom of each block to house an LED. Wires ran from the LEDs back into the drainage port of a cooler.

The cooler housed the main electronics. The LED controller board is of [Dennis’] own design. It contains six TLC59282 chips allowing for control of up to 96 LEDs. Each chip has its output lines running to two RJ45 connectors. [Dennis] couldn’t just use one because one of the eight wires in the connector was used as a common power line. The main CPU is an Arduino. It’s hooked up to a DS3234 Real Time Clock in order to keep accurate time. The oscillator monitors temperature in order to keep accurate time even in the dead of winter. Continue reading “Binary Clock Fit For Queen Elsa’s Ice Palace”

New Part Day: Three-dimensional USB Connectors

There’s an old joke that says USB cables do not exist in three-dimensional Euclidian space. Try to plug a USB cable in a socket, and the first try will always be wrong. Flip it, try to plug it in, and that will also be wrong. You will only succeed on the third try, and this is proof that USB connectors exist in higher planes of reality with arcane geometries. The joke is as old as the Pythagoreans, who venerated USB connectors as gods.

The waveform has collapsed, the gods profaned, and USB connectors that exist in only three dimensions have arrived. We’re talking, of course, about reversible USB Type A connector that will plug in the first time, every time. No need for electromancy or the “looking on the cable for the USB logo and plugging it in with that side up” method used by tech plebeians.

This discovery came after going through my daily roundup of crowdfunding press releases, eventually landing me on this idiotic project. It’s a USB charge cable that’s supposed to charge your phone twice as fast, despite the fact that charging speed is a function of current, and that’s determined by whatever you’re charging from, not the cable. Terrible idea, but they do have something interesting: a three-dimensional USB connector.

connUSBThe connector isn’t the brand new USB 3.1 Type C connector that will eventually find its way into phones, laptops, wearables of all types. This is your standard Type A USB plug you’ve known and loved for the past eighteen years. The difference here is that the chunky block of plastic that has made the common USB cable non-reversible for so many years is gone. In its place is a tiny strip of plastic that has contacts on both sides. Yes, it took nearly two decades for someone to figure out this would be a marketable idea.

While searching for a source for these three-dimensional USB connectors, the only source I could come up with was Wurth Elektronik, With Farnell/Element14 carrying a selection of connectors, a few available on Digikey, and some available on Mouser. There are even a few pre-made reversible cables available, with Tripp Lite leading the game right now.

For integrating one of these connectors into your build, there’s only one thing to watch out for: the pinout for these plugs is mirrored on each side of the thin strip of plastic going down the middle of the connector. This means your VCC and GND pins will be right next to each other, your D+ and D- signal pins right next to each other, and now you have to do your layout with eight pins instead of only four.

While it may not be groundbreaking and it makes for some confusing PCB layout work, but as told by a highly successful crowdfunding campaign, this can be a real feature for a product.

If you’ve recently come across a component, connector, or part that’s unique, interesting, or downright cool everyone should know about, send it on in and we’ll take a look at it.

Drums Anywhere!

The students over at Cornell’s School of Electrical and Computer Engineering have been hard at it again with their senior projects. This time, it’s the very tiny and portable drumset dubbed Drums Anywhere by its creators [Shiva Rajagopal] and [Richard Quan]. Since there are other highly portable instruments like roll-up pianos, they suppose there should be a portable drum kit that actually sounds like drums, and this ECE duo have hit the metaphorical and physical drum on the head… except that this project doesn’t actually use physical drums to make sound.

The project consists of two 3D-printed box-like sensors with velcro straps that can be attached to any drumstick-shaped object that might be lying around. Inside the box is a flex sensor and a tiny microphone which report the “beats” to a microcontroller when they strike another object.

On the software side, there are two sampled sounds stored in the microcontroller but they plan to add more sounds in the future. The microcontroller outputs sound to a pair of speakers, and the sensors are sensitive to force, so the volume can range from almost inaudible all the way up to [John Bonham]-style booms. This could also be theoretically expanded to include more than two “beat boxes” for extra sounds, or be wireless. The options are virtually limitless, although the team notes that they are limited by the number of interrupts and ADC converters on their particular microcontroller, an ATmega1284.

This is another interesting take on a having drumset without the drums, and definitely expands the range of what a virtual drum set can do. It’s also great to see interesting projects coming from senior design classes! Be sure to check out the video after the break.

Continue reading “Drums Anywhere!”

Power Meter

Electricity Usage Monitor Is Linked To Google Spreadsheets

If you want to make your home more energy-efficient, chances are you will need a way to monitor your electricity usage over time. There are off-the-shelf solutions for this of course, but hackers like us tend to do things our own way. Take [Karl] for example. He recently built himself a solution with only a few smart components. We’ve seen similar projects in the past, but none quite like this.

[Karl’s] home has a power meter that blinks an LED to indicate the current amount of used electricity in Watt-hours. He knew all he needed was a way to electronically detect the blinking LED and he’d be able to accurately track his usage without modifying the meter.

The primary components used in this project were a CC3200 development kit and a photoresistor module. The dev kit contained a WiFi module built-in, which allows the system to upload data to Google spreadsheets as well as sync the built-in clock with an accurate time source. The photoresistor module is used to actually detect the blinking LED on the power meter. Everything else is done easily with code on the dev kit.

Flexible Numitron Tube Clock Build

Hackers and makers alike often use whatever’s readily available. Sometimes this is done out of necessity, other times because of the desire to make something work without waiting for parts to ship or some store to open. And many times, we use what we already have simply because it presents a challenge. A couple of years ago, [Alan] made a beautiful clock that combines the lessons he learned from building a word clock with the challenges presented by some IV-9 and IV-16 Numitron tubes he acquired.

This build expanded [Alan]’s horizons while extending the use of his existing tools. The timekeeping is done with a word clock board he had designed previously that can utilize any of three kinds of RTC modules. Further flexibility is evident in the top board, which is designed with double footprints to accommodate through-hole or SMD shift registers and resistors. His current board iteration allows for chaining if you like your time displays long and specific. If the vintage blue reddish-orange glow of VFDs  Numitron tubes offends your eyes for some reason, there’s a dual-footprint for a single-color LED under each tube.

It’s worth mentioning that these are not Nixie tubes, they are vacuum fluorescent displays (VFD)s Numitron tubes.  If you already have or plan to acquire some but don’t know how to drive them, check out this Numitron tutorial we covered a few years back.

Edit: D’oh. As you have pointed out, these are Numitron tubes, not VFDs or Nixies. That is what multitasking will get you. We applaud your vigilance.

DIY Camera Shutter Control

Full SHTTTRRR Control Lets You Take Your Time…

[Glitchmaker] loves photography and wrote in to tell us about his newest project. He has a Canon 1000D camera but, unfortunately, it does not have time lapse capability. So, instead of shelling out a chunk of change for a new camera [Glitchmaker] decided to make an external shutter control device that can continue to instruct the camera to take photos at predetermined intervals. He calls his project: SHTTTRRR. You didn’t think that meant something else, did you?

You can see the unassuming box above, there is just enough stuff packed in there to get the job done, nothing extra or fancy. Luckily, the Cannon camera has a remote shutter input jack that only requires connecting one pin to another in order to take a photo. Inside the box is an ATTINY45 microcontroller. It reads the button pushes from the single panel-mounted button and calculates the time between two button presses. That time between button presses determines the frequency of the photos taken. At the appropriate times, the ATTINY45 signals a transistor to connect the two appropriate pins on the camera’s remote shutter input jack. The device continues to tell the camera to take photos until it is shut off. The result is a series of time-lapse photos that was previously not possible on that camera!

This is a simple project that solves a problem and gets the job done. What’s better than that? [Glitchmaker] is proud of the SHTTTRRR he made and also learned a bunch about programming the ATTINY45 along the way. Check a video of it working after the break.

Continue reading “Full SHTTTRRR Control Lets You Take Your Time…”

Budget Wrist-Controlled RC Car Is A Nice Touch

Does your RC car’s crude, push-button controller make you feel like you’re mashing tv remote buttons like a caveman? We think so too, but [Noel] has actually done the heavy-lifting to fix just that. He’s revamped his kids’ rc controller for gesture control. Now their rc car can be guided by the crisp, intuitive control of one’s wrist movements.

To tackle this project, [Noel] has integrated a gyroscope and accelerometer, an Arduino, and the existing remote. Data from the gyroscope-and-accelerometer limits are mapped to the buttons through an Arduino, which parses the raw data and triggers the controller’s switches, now wired directly to the Arduino and pulled up with resistors. In his overview video, [Noel] tells us that he’s binarized the gyroscope-and-accel data to trigger at certain limits, a choice that adequately suits the controller’s original push-button controls. Finally, the entire setup is cleanly strapped to a 3D-printed case. Not bad, for a grand total of $20 and a quick trip to Target.

[Noel]’s custom wrist-controller takes its place on the shelf of many other unique controllers, and his demo is a great example of using existing open hardware to tailor our toys to more personal tastes. After all, the hardware shopping list is just a breakout board, an Arduino, and a few jumper wires. When the next zombie apocalypse hits, we can easily see some practical components like these making their way into our suitcase. At the very least, we’ll be able to build a few wrist controllers and dispatch some toy cars to greet the undead.

Continue reading “Budget Wrist-Controlled RC Car Is A Nice Touch”