Measuring Tiny Current With High Resolution

measuring-microamps-at-3MHz

[Paul] knew that he could get an oscilloscope that would measure the microamp signals with the kind of resolution he was after, but it would cost him a bundle. But he has some idea of how that high-end equipment does things, and so he just built this circuit to feed precision data to his own bench equipment.

He’s trying to visualize what’s going on with the current draw of a microcontroller at various points in its operation. He figures 5 mA at 2.5 mV is in the ballpark of what he’s probing. Measurements this small have problems with noise. The solution is the chip on the green breakout board. It’s not exactly priced to move, costing about $20 in single quantity. But when paired with a quality power supply it gets the job done. The AD8428 is an ultra-low-noise amplifier which has way more than the accuracy he needs and outputs a bandwidth of 3.5 MHz. Now the cost seems worth it.

The oscilloscope screenshot in [Paul’s] post is really impressive. Using two 1 Ohm resistors in parallel on the microcontroller’s power line he’s able to monitor the chip in slow startup mode. It begins at 120 microamps and the graph captures the point at which the oscillator starts running and when the system clock is connected to it.

Drilling PCBs With Cameras And Math

PCB

After making your first PCB, you’re immediately faced with your next challenge – drilling the holes. It’s a doable task with a small drill press, but a lot of makers already have a small CNC mill or router, but how to make that work the first time? [Alessio] has you covered with a technique that uses a CNC-mounted webcam and some linear algebra for perfect through-holes the first time and every time.

A few months ago we saw [Alessio]’s work with transform matrices and PCB drills. The reasoning behind this technique is if a PCB isn’t exactly aligned to a CNC mill’s axes, or if the scaling for a toner transfer board is a bit off, automating the drilling process will only end in pain, with holes going through traces and a whole host of other nasty things. The application of linear algebra gets around this problem – taking a measurement off of two or three known locations, it’s easy to program a CNC machine to drill exactly where it’s supposed to.

[Alessio]’s new project takes the same mathematical techniques and applies them to a very sleek application that uses a drill-mounted webcam. After taping his homebrew PCB down to the mill, [Alessio] simply marks off a few known points, imports the drill file, and lets a computer calculate where to drill the holes. The results are remarkable – with a soldermask and silkscreen equipment, these handmade boards can be just as good as professionally manufactured boards,

There are Windows and OS X binaries for [Alessio]’s tool available on his page, with a video demo available below.

Continue reading “Drilling PCBs With Cameras And Math”

DIY Prescription Swimming Goggles

diy-prescription-swimming-googles

We can’t see much without our glasses (which is why our habit of shaving in the shower often ends badly). Our glasses cost a bundle, but we wear them every waking moment so it’s worth it. But only recently did we break down and spring for prescription sunglasses. However, when it comes to sports we don’t pony up the dough for dedicated specs. Here’s a hack that will change that. If you’ve still got your last set of glasses on hand hack up the lenses for swimming goggles or other applications.

In this case [Dashlb’s] lenses were already small enough to fit in the goggles. He simply added a bead of Sugru around the edges to hold the lenses in place. But if you do need to cut them to size aligning the lenses with your eyes is important, so we suggest the following: have a buddy stand in front of you and mark the center of your pupil on the glasses, as well as the goggles. If you need to cut down the lenses (which are probably a type of polycarbonate) just make sure the marks match up before doing any cutting.

We might give this a try with some wrap-around sunglasses to make an inexpensive pair of prescription cycling shades.

Current Limiter For A MOT Welder

current-limiter-for-MOT-welder

[Mike Worth] wanted the option to run his Microwave Oven Transformer welding rig at less that full power. After being inspired by some of the other MOT hacks we’ve featured he figured there must be a lot of ways to do this. But his searches on the topic didn’t turn up anything. So he just designed and built his own adjustable current limiter for the welder.

At the beginning of his write-up he details what we would call a bootstrap procedure for the welder. Go back and check out his original build post to see that he had been holding the framework for the cores together using clamps. To make the setup more robust he needed to weld them, but this is the only welder he has access to. So he taped some wood shielding over the coils and fired it up.

The current limiter itself is built from a third MOT. Adjustment is made to the cores by changing out the E and I shaped pieces. This allows for current limiting without altering the windings. [Mike] holds it all in place with a couple of bicycle wheel quick connect skewers.

It just goes to show that you should never get rid of a microwave without pulling the transformer. Even if you don’t need a welder wouldn’t you love a high-voltage bug zapper?

Biodiesel Equipment Hacks

biodiesel_hacks

[Oldman] took on a biodiesel project for some friends a few years ago. A fully operational processing rig was never achieved, but he did document some of the successful hacks he came up during the project.

The idea is to reclaim the waste oil from restaurants and burn it in your modified racing motorcycle or other mode of transportation. That makes it sound easy, but have you ever seen what happens to bacon fat after it cools? Granted, we’re talking oil from vegetable sources but the same type of coagulation presents itself. Pumping it through a processing rig becomes especially tough in the winter, and that’s why [Oldman] came up with the heated pump head on the right. It’s got three connections; two are part of a loop of copper tubing, allowing 150 degree water to be circulated to liquefy the grease. The third connection sucks up the melted oil. You also need to regulate the water content of the fuel. The inset images of a salad dressing jar are his test runs with applying vacuum to dehydrate the fuel. He learned that it needs to be heated slightly to reduce foaming. He had planned to scale up this concept to apply vacuum to fuel stored in propane tanks.

Dead Drop Concept Inspired By [Ender Wiggin] Family

encrypted-dead-drop-concept

[Tyler Spilker’s] DDD project is a Digital Dead Drop system based on Python and a Raspberry Pi as a server. It’s pretty rough around the edges at this point — which he freely admits. But we like the concept and figure it might spark an interesting conversation in the comments section.

Now by far our favorite dead drop concept is this USB drive lewdly sticking out of a brick wall. But you actually need to be on-site where this drive is mortared into the wall in order to access it. [Tyler] instead developed a webpage that gives him a text box to enter his messages. These are encrypted using key pairs and pushed to his remote RPi server. This way he can write down his thoughts knowing they’re stored securely and never in danger of being accessed from a lost or stolen cellphone.

If free thought isn’t what you’re trying to transfer from one place to another you probably want something like a Pirate Box.