Spoofing WiFi AP Based Geolocation

[Pierre Dandumont] just finished up a little project that will give Google Maps’ location feature a run for its money. It’s a technique that spoofs WiFi networks in order to relocate the positional data reported via WiFi networks.

He starts with an explanation of the different ways modern devices acquire location data. GPS is the obvious, and mobile network triangulation is pretty well know. But using WiFi networks may be a new trick for you. We’re not 100% certain but we think Google is able to look up location data based on known IP addresses for WiFi access points (this would be a good comments discussion). To trick the system all you have to do is feed some captured AP data into the computer before Google Maps tried to lock onto a location. The video after the break shows Maps with the legit location displayed. After running a quick script whose output is shown above the map position is changed to the spoofed location.

Continue reading “Spoofing WiFi AP Based Geolocation”

Stopping A Hackerspace From Rusting Away

steel

The illutron hackerspace in Copenhagen makes their home on a barge sitting in port. Not only is this awesome, but the members of the hackerspace also worry about corrosion to their beloved fablab. In an effort to ally some fears about rust slowly eating through the hull, [Dzl] has rigged up a cathodic protection system for their hull, essentially preserving their barge at the expense of a few old steel rails.

Cathodic protection systems are able to protect the steel of a ship’s hull by offering up a sacrificial anode made of aluminum or zinc. This can be done by either attaching a sacrificial anode directly to the hull, or with a more complex system that connects both the cathode (the ship) and the anode (an engine block) to a DC power source.

[Dzl] is converting mains voltage down to 12 VDC, then further lowering the voltage with an Arduino-controlled buck converter. The control panel allows for adjustments in the voltage, as well as a nice uptime meter to make sure it’s running.

The results are fairly impressive; in the above pic, the right piece of steel was electrically connected to the barge’s hull, while the left piece was free to rust in the North Sea. That’s only two days worth of corrosion there.

Making A HP Frequency Counter More Accurate

[Gerry] built his own high stability timebase add-on for his HP 53131 frequency counter. This project started out after [Gerry] built a rubidium 10 MHz standard for his lab. Upon connecting the standard to the frequency counter for calibration, he found that the HP 53131 had an awful internal oscillator. The official high stability timebase add-on from HP cost about $1000, and he was determined to do better.

Using a second hand OCXO as the oscillator, he designed his own add-on module. OCXO modules pack a crystal oscillator in a thermal chamber. Since temperature fluctuation causes drift in crystal oscillators, an OCXO controls the temperature to keep the frequency constant. They can be bought second hand on eBay for under $30.

The PCB design for the module can accommodate a variety of OCXO modules. It uses a high speed comparator and a high stability 5 volt reference to provide the clock signal to the counter. A DAC is used to calibrate the oscillator. By keeping the same DAC as the original counter, the add-on board can be calibrated using the front panel of the device.

The project is a drop in replacement for HP’s $1000 module for a fraction of the cost. [Gerry]’s write up has all the details you’ll need to build your own.

Continue reading “Making A HP Frequency Counter More Accurate”

Sony SmartWatch Hack Lets It Tell Time With A Teapot Animation

sony-smartwatch-wireframe

This hack turns the Sony SmartWatch into a wristwatch. Functionally it’s not all that impressive. But the journey to get to this point represents quite a bit more. This example features an animated tea pot using a 3D rendering engine ported over to the device.

[Federico] started work on the project soon after hearing that Sony had released details about developing for the hardware. He dug into the documentation but soon found it lacked the depth he needed to get a handle on bare metal work. He shelved the project for a while until coming across the Astrosmash project we featured in June. That used a wrapper that allows Arduino sketches to run on the watch. After studying how that’s done he had enough background to port this code.

We’re still waiting to see a really innovative hack for the watch. But we’re glad to see progress with each new proof of concept like this one!

Continue reading “Sony SmartWatch Hack Lets It Tell Time With A Teapot Animation”

Making S’mores With 50,000 Volts

[Skyy] sent us a video of him cooking s’mores with an electric arc. He’s using a flyback transformer with a zero voltage switching (ZVS) driver. This produces about 50 kV, which is more than enough to toast the marshmallow.

ZVS is a technique that triggers the semiconductor switches when they have zero voltage across them. This ensures that there’s minimal heat created by the switches, since they are not interrupting any current at the time they are toggled. ZVS is also used in lighting dimmers to switch off power without creating interference.

If you’re interested in the details, there’s a great tutorial on building the driver. If you’re interested in learning how it works, check out this simulation video.

[Skyy] admits that his setup isn’t terribly safe since it uses a breadboard, which isn’t rated for the high voltages and currents. Keep in mind that these circuits could kill you. After the break, watch a marshmallow fry in a 50 kV arc.

Continue reading “Making S’mores With 50,000 Volts”

Building An Ethernet Connected RFID Reader

For the last few years, [Lt_Lemming] was the president of Brisbane’s hackerspace. Until several months ago, access to the local was done using 125KHz RFID tags and an Arduino board with a prototyping shield. As the hackerspace gained members and moved to bigger facilities, [Lt_Lemming] decided to build himself a more compact and advanced platform.

His Simple NetworkAble RFID Controller (SNARC) is a platform which can be connected to an Ethernet network and different RFID readers in order to implement smart access control functionalities. Through hole components were selected so even solder apprentices may assemble it. The PCB was designed using Fritzing, and development can even be done inside the Arduino IDE as ISP and serial headers are available on the board. Finally, an N-channel mosfet controls the door locking mechanism.

The project is open hardware and software, and all the sources can be downloaded from [Lt_Lemming]’s github repo.

[Update] Vladimir’s Robot Guitar

vladGuitar2013

[Vladimir Demin] is somewhat of a legend for us; in his spare time he’s been mastering the automation of musical instruments. This time he’s back with upgrades to his build and four new videos. [Vladimir’s] top priority was to rework the strumming mechanism that earlier ran on solenoids. He’s improved the sound quality and reduced the clicks by swapped to stepper motors and overhauling the software.

Compared to his earlier setup, this one sounds more soulful and less automated, but [Vladimir] admits that it’s still not good enough and that he’s working on a new, brilliant implementation. Until then, take a few minutes and check out the rest of the videos below, then join us in scratching our heads in amazement: everything is built with simple hand tools.

[Vladimir] has come a long way, and it started with this Bayan (button accordion). Last year’s guitar build is also worth a look, as well as an in-depth interview.

Continue reading “[Update] Vladimir’s Robot Guitar”