Dispensing Change For Low-stakes Gambling

change

Every year, [Nathan] hosts an Oscar party with a lot of drinking, adoring the off-color comments of [Joan Rivers] and some low stakes wagering. Everyone throws a dollar into the pot for a particular award, and when the winner is announced, [Nathan] splits the pot between the winners and begins counting out coins. As convenience stores have discovered, there’s an easier way to dole out pocket change, so this year [Nathan] created a change machine that dispenses coins for the winners.

The change machine is just like the ones you would find at a supermarket or convenience store; load up the machine with a few rolls of coins, and a few solenoids fire in response to serial data received from a computer. [Nathan] used an Arduino, Serial shield, button matrix, and LCD display for his change machine interface, allowing him to dispense pocket change to each of the winners after an award is announced.

3D Display Controlled With The Leap Motion

3d-display-controlled-with-leap-motion

Touch screens are nice — we still can’t live without a keyboard but they suffice when on the go. But it is becoming obvious that the end goal with user interface techniques is to completely remove the need to touch a piece of hardware in order to interact with it. One avenue for this goal is the use of voice commands via software like Siri, but another is the use of 3D processing hardware like Kinect or Leap Motion. This project uses the latter to control the image shown on the 3D display.

[Robbie Tilton] generated a 3D image using Three.js, a JavaScript 3D library. The images are made to appear as if floating in air using a pyramid of acrylic which reflects the light toward the viewer’s eyes without blocking out ambient light in the room. In the past we’ve referred to this as a volumetric display. But [Robbie] points out that this actually uses the illusion called Pepper’s Ghost. It’s not really volumetric because the depth is merely an illusion. Moving your point of view won’t change your perspective unless you go around the corner to the next piece of acrylic. But it’s still a nice effect. See for yourself in the demo after the jump.

Continue reading “3D Display Controlled With The Leap Motion”

Airport X-ray Machine Teardown

Who has an airport carry-on X-ray machine sitting in their garage? Apparently [Mike] does, and he’s sharing the fun by posting a video teardown series that really digs into the machine’s hardware and operating system.

At this point the series includes six lengthy segments. The first episode, which you’ll find embedded after the break, starts with an external overview of the hardware. [Mike] mentions that it’s not functional at that point. He guesses that this has to do either with security settings to enable the machine (it does produce x-ray after all) or corrupt memory in an EPROM chip. The password lockout is later confirmed when he looks at a code disassembly and finds strings requesting username and password to gain access to some of the menus. The second installment involves more disassembly to figure out the passwords and gain full access to the machine. By the fourth video he’s X-raying random items from around the shop and then some.

It’s a lot to watch, but it’s exciting to see how far he gets with the rare equipment.

Continue reading “Airport X-ray Machine Teardown”

Making A Commodore 64 Portable

making-a-c64-portable

This is [Wpqrek’s] Commodore 64 modified to go on the road with him. The elderly machine has a special place in his heart as it was what he learned to code on. He performed a series of hacks which house everything necessary to use the machine inside the original case.

Obviously the hack that has the most effect when it comes to portability was swapping a display for the small LCD mounted above the number keys. This was a pretty simple process because the screen, originally intended for a rear view camera in a vehicle, already had a composite video input. To emulate the floppy disc drive he’s using an SD card via an sd2iec board which he laid out himself. Rounding up the alterations is a stereo SID. The second channel uses the pre-amp circuit cut from a second C64. This audio hardware will let him do cool things like playing some classic Zeppelin.

You can get a video tour of these alterations after the break.

Continue reading “Making A Commodore 64 Portable”

Printed Machine Does Nothing Until The Heat Death Of The Universe

machine

A 2:1 gear reduction slows down a spinning shaft to half speed and doubles the torque. Repeat this a few times, and you’ve got a ludicrous amount of torque moving too slowly to see with even precision instruments. That’s the idea behind [Jeshua]’s project, a Printed Machine partially embedded in a block of concrete.

[Jeshua]’s build is a replica of one of [Arthur Ganson]’s kinetic sculptures. [Ganson]’s machine uses 50 sets of gears to reduce the rotation of 200 RPM motor more that 200  quintillion times. The final gear in the sculpture is embedded in a block of concrete, waiting to be freed by either erosion of the concrete block or the sun going nova.

Instead of metal gears, [Jeshua] used 3D printed gears in PLA. After assembling them on a stand, he cast concrete around the final, barely moving gear. It’s an impressively useless build that will turn to dust before the final gear makes even 1/10th of a revolution. This machine could have a longer life if it were printed with ABS instead of PLA, but with the time scales we’re talking about here it won’t make much difference.

Hackaday Links: March 8, 2013

Cheap GPS modules

GPS

If you’re making a GPS-enabled project, you may have noticed the commonly available GPS modules are pretty expensive – usually around $50. Here’s one for $8. It’s a U-blox PCI-5S GPS receiver on a PCI Express card. There are test points for serial and USB data, though, so fitting this in your project is a breeze.

Grandfather clock makes a giraffe’s scarf

knit

Here’s a clock project from [Siren Elise Wilhelmsen]. Over the course of 365 days, the clock knits a giant, 2-meter tube of yarn that should be the perfect start for a half-dozen pairs of socks. No video for this, but if you find one, post a comment.

A huge hackerspace for Hotlanta

hotlanta

Atlanta is getting a new hackerspace. It’s called My Inventor Club and they’re starting to move into their space. Judging from [Scott]’s pictures of the new space it’s huge. We can’t wait for the video tour once they’re done moving in.

Ardino and Windows 8

arduino Uno eega

Windows 8 is… weird… and you can’t install unsigned drivers without a lot of rigamarole. This means installing the Arduino IDE is a pain but [Dany] has a solution. Reboot into “test mode” and you can install unsigned drivers without your computer throwing a hissy fit.

Tweet for welts and bruises

IMG_3293

[Zach]’s boss told him to come up with a Twitter-controlled paintball gun. Why he was asked to build this is beyond us, but the build is still cool. It’s powered by an Arduino and was built in just 12 hours. If only there was a video stream…

Hey guys, need some help here.

Alright, I’ve got a little problem with component sourcing. I’m making a ‘shield’ for the Raspberry Pi. Does anyone know where I can get really long female headers for the GPIO pins so the board will fit over the USB and Ethernet jacks? Here’s the project if you’re curious. I think the female part of the header needs to be 14mm high at least to fit over the USB port.

EDIT: Samtec ESQ-113-33-L-D. Here’s their site. This site is amazing. You can actually… find things. Completely unique experience here. Thank you, [Richard].

Putting Yourself Inside A Display

dome

Here’s an interesting build that combines light, sound, and gesture recognition to make a 360 degree environment of light and sound. It’s called The Bit Dome, and while the pictures and video are very cool, we’re sure it’s more impressive in real life.

The dome is constructed of over a hundred triangles made of foam insulation sheet, resulting in a structure that is 10 feet in diameter and seven and a half feet tall. Every corner of these panels has an RGB LED driven by a Rainboduino, which is in turn controlled by a computer hooked up to a Kinect.

The process of interacting with the dome begins by stepping inside and activating the calibration process. By having the user point their arms at different points inside the dome, the computer can reliably tell where the user is pointing, and respond when the user cycles through the dome’s functions.

There are bunch of things this dome can do, such as allowing the user to conduct an audio-visual light show, run a meditation program, or even play Snake and Pac-Man. You can check out these games and more in the videos after the break.

Continue reading “Putting Yourself Inside A Display”