VCF West: All The Floptical Disks

Nowadays, if you want to transfer a file from one computer to another, you’d just send it over the network. In those rare occasions where that won’t work, a USB thumb drive will do. It wasn’t always this way, and it was much more confusing; back in the day when we had floppy drives. We had floptical drives. A single unlabeled 3.5″ floppy disk could be formatted as 360, 720, or 1440k IBM drive, a 400, 800, or 1440k Macintosh drive, an Apple II volume, or an Amiga, or an Acorn, or a host of other logical formats. That’s just one physical format of a floppy disk, and there are dozens more.

For this year’s VCF West, [Foone], hardware necromancer and collector of rare and esoteric removable storage formats, brought out the goods. He has what is probably the most complete collection of different floppy drive formats on the planet, and they were all out on display this weekend.

Continue reading “VCF West: All The Floptical Disks”

Digitizing Domesday Disks

After the Norman invasion of England, William the Conqueror ordered a great reckoning of all the lands and assets owned. Tax assessors went out into the country, counted sheep and chickens, and compiled everything into one great tome. This was the Domesday Book, an accounting of everything owned in England nearly 1000 years ago. It is a vital source for historians and economists, and one of the most important texts of the Middle Ages.

In the early 1980s, the BBC set upon a new Domesday Project. Over one million people took part in compiling writings on history, geography, and social issues. Maps were cataloged, and census data recorded. All of this was printed on a LaserDisk, meant to be played on an Acorn BBC Master. Now, 30 years on, hardly anyone can read the BBC Domesday Project. Let that be a lesson, kids: follow [Jason Scott] on Twitter.

Even though Acorn computers and SCSI LaserDisks and coprocessors are dying, that doesn’t mean the modern Domesday Disk is lost to the sands of time. This project aims to duplicate the Domesday Disk, and in the process provide a means to archive all LaserDisks. It’s a capture card for LaserDisks, and it also means we can finally make a good rip of the un-specalized Star Wars.

The Domesday Duplicator is a shield that plugs into an Altera DE-0 Nano FPGA board and a Cypress FX3 USB board. The Duplicator itself serves as an analog capture card complete with an RF amplifier and a 40 MSPS ADC — fast enough for any analog video signal. With the 50 Ohm input, it will work with most LaserDisk players, ultimately preserving this incredible historical archive from the early 80s.

A Retrocomputer Disk On A Chip

There have been a lot of different mass storage methods over the relatively short lifespan of the computer. Magnetic tapes, drums, all sorts of disks, and flash memory have each had their time. Each of these new innovations required some time to become easy to use. One of the early attempts to simplify using flash memory was the M-Systems DiskOnChip device. Looking like a standard 8K JEDEC-compatible memory device, it actually provided access to a flash disk drive ranging from 16MB to 1GB. [Smbakeryt] bought some of these devices and built an ISA board to provide a disk and clock for the old 8-bit bus. You can see a video discussion about the device below.

SanDisk bought M-Systems and discontinued the devices back in 2007. Of course, you can still design flash memory into your system, but the simple and efficient interface of the DiskOnChip is no more. It is a testament to how simple the interface is that the schematic for the little board fits on a page, including the DS12885 real time clock.

Continue reading “A Retrocomputer Disk On A Chip”

RGB Disk Goes Interactive With Bluetooth; Shows Impressive Plastic Work

[smash_hand] had a clear goal: a big, featureless, white plastic disk with RGB LEDs concealed around its edge. So what is it? A big ornament that could glow any color or trippy mixture of colors one desires. It’s an object whose sole purpose is to be a frame for soft, glowing light patterns to admire. The disk can be controlled with a simple smartphone app that communicates over Bluetooth, allowing anyone (or in theory anything) to play with the display.

The disk is made from 1/4″ clear plastic, which [smash_hand] describes as plexiglass, but might be acrylic or polycarbonate. [smash_hands] describes some trial and error in the process of cutting the circle; it was saw-cut with some 3-in-1 oil as cutting fluid first, then the final shape cut with a bandsaw.

The saw left the edge very rough, so it was polished with glass polishing compound. This restores the optical properties required for the edge-lighting technique. The back of the disc was sanded then painted white, and the RGB LEDs spaced evenly around the edge, pointing inwards.

The physical build is almost always the difficult part in a project like this — achieving good diffusion of LEDs is a topic we talk about often. [smash_hands] did an impressive job and there are never any “hot spots” where an LED sticks out to your eye. With this taken care of, the electronics came together with much less effort. An Arduino with an HC-05 Bluetooth adapter took care of driving the LEDs and wireless communications, respectively. A wooden frame later, and the whole thing is ready to go.

[smash_hands] provides details like a wiring diagram as well as the smartphone app for anyone who is interested. There’s the Arduino program as well, but interestingly it’s only available in assembly or as a raw .hex file. A video of the disk in action is embedded below.

Continue reading “RGB Disk Goes Interactive With Bluetooth; Shows Impressive Plastic Work”

World’s Stupidest Solid State Disk Drive Hack

The title might seem a little harsh, but it is a direct quote from the video by [Linus Tech Tips] that you can see below. He picked up a board that is a RAID 0 controller for up to ten SD cards so you can use them as a conventional SATA SSD. Of course, the channel’s tag line is “impractical solutions for improbable problems” but even by his own admission, this is pretty impractical.

It is odd for us to scoff at any kind of hack, but honestly, it is hard to see the value to this, other than it is amusing to think some factory turned these boards out hoping to make a profit. Besides being amusing, though, it is also a good exercise in design trades. For example, when you design a car, you want it to be safe, but you can’t make the body out of four-inch thick steel because of cost, weight, and fuel consumption. So you balance these concerns by making tradeoffs.

Continue reading “World’s Stupidest Solid State Disk Drive Hack”

Roll Your Own Magnetic Encoder Disks

[Erich] is the middle of building a new competition sumo bot for 2018. He’s trying to make this one as open and low-cost as humanly possible. So far it’s going pretty well, and the quest to make DIY parts has presented fodder for how-to posts along the way.

One of new bot’s features will be magnetic position encoders for the wheels. In the past, [Erich] has used the encoder disks that Pololu sells without issue. At 69¢ each, they don’t exactly break the bank, either. But shipping outside the US is prohibitively high, so he decided to try making his own disks with a 3D printer and the smallest neodymium magnets on Earth.

The pre-fab encoder disks don’t have individual magnets—they’re just a puck of magnetic slurry that gets its polarity on the assembly line. [Erich] reverse-engineered a disk and found the polarity using magnets (natch). Then got to work designing a replacement with cavities to hold six 1mm x 1mm x 1mm neodymium magnets and printed it out. After that, he just had to glue them in place, matching the polarity of the original disk. We love the ingenuity of this project, especially the pair of tweezers he printed to pick and place the magnets.

Rotary encoders are pretty common in robotics applications to detect and measure wheel movement. Don’t quite recall how they work? We’ll help you get those wheels turning.

via Dangerous Prototypes

Your Hard Disk As An Accidental Microphone

We’re used to attaching peripherals to our computers, when we have a need for them to interact with the world around them. An Arduino Uno needs a shield to turn on the lights, for example. Just sometimes though there is the potential for unintended interaction between a computer and the real physical world which surrounds it, and it’s one of those moments that [Alfredo Ortega] has uncovered in his talk at the EKO Party conference in Buenos Aires. He demonstrates how a traditional spinning-rust computer hard disk interacts with vibration in its surroundings, and can either become a rudimentary microphone, or be compromised by sound at its resonant frequency (PDF).

It seems that you can measure the response time of the hard drive head during a read operation without requiring any privilege escalation. This timing varies with vibration, so can be used to reconstruct the sound that the drive is facing. Thus it becomes a microphone, albeit not a very good one with a profoundly bass-heavy response. He goes on to investigate the effect of sound on the drive, discovering that it has a resonant frequency at which the vibration causes it to be unreadable.

Sadly the talk itself appears not yet to be online, but given that previous years’ EKO talks are on YouTube it is likely that when the dust has settled you will be able to see it in full. Meanwhile he’s posted a video demonstration which we’ve posted below the break.

Continue reading “Your Hard Disk As An Accidental Microphone”