The First 3d Printed Gun Has Been Fired, And I Don’t Care.

3d-printed-gunSeveral people have sent us this story. I’ve seen it everywhere. A lot of people are upset, on several sides.  A gun has been 3d printed that can actually fire a round.

First, we have people scared that this will bring undetectable guns to people who wouldn’t have had access before. Then we have the gun fans that are reacting to the others with shouts of freedom and liberty and stuff.  The 3d printing community has had mixed reactions, but many are concerned that this will harm 3d printing in general.

I simply don’t care.

Continue reading “The First 3d Printed Gun Has Been Fired, And I Don’t Care.”

Picking Handcuffs With Laser Cut Keys

At this year’s HOPE conference, German competitive lockpicker and security researcher [Ray] gave a talk about escaping high security handcuffs that are probably being used by your local police and other LEOs. He’s doing this with 3D printed and laser cut keys because, you know, security through obscurity never works.

Two years ago, [Ray] gave a talk at HOPE on 3D printing Dutch handcuff keys (you can listen to his conference as an .MP3 here). This time around, [Ray] copied the keys of Bonowi and Chubb handcuffs, very popular brands for American police. After obtaining a key from each of the two brands, [Ray] broke out the calipers and micrometer and designed his own versions that can be printed on a RepRap or Makerbot, or just laser cut from a piece of plastic; the perfect material for sneaking one through a metal detector.

The .DXF and .STL files for the handcuff keys will be available on Thingiverse shortly. We’d suggest watching this Thingiverse account (nevermind), as they have the files for [Ray]’s earlier Dutch handcuff key.

Advent Calendar Of Circuits

We missed 60% of it already, but luckily you can easily watch the back catalog of [Alan Yates’] 2011 Advent Calendar of Circuits. As with traditional Advent Calendars he’s got a treat for every day in December leading up to Christmas. Instead of chocolate, the treat is a video about a different electronic circuit.

We didn’t find a playlist link, but you can just head over to his YouTube channel as each day is clearly labelled in the video titles. He starts off with a current limiting voltage regulator. A couple of days later he busts out a metal detector that will be fun to play with. Day 7 brings an AM transmitter/receiver pair, and Day 12 illustrates a burnt-out Christmas light detecting tool which we’ve embedded after the break.

The sheer volume of projects he’s putting out every day is remarkable and delightful. He doesn’t even limit himself to one video a day, but has posted several ‘extra’ editions with quick, circuit demos. Continue reading “Advent Calendar Of Circuits”

Onward To Toorcon


I’m waiting for my ride on the first leg of my trip to Toorcon. I’ll be there along with Eliot and Fabienne. Dan Kaminsky will be there presenting, so we’ll be having a major HAD get together. My local (tiny) airport actualy has wireless, tables and power readily available. Security will love me – I’ve got my usual tools (soldering iron, wire strippers, meter, etc) in my checked bag. (This is amusing – the security guy is doing laps through the metal detector to dial it in.)

[UPDATE: Eliot] Toorcon is my favorite conference. Have a look at some of the neat stuff we saw last year.

Vintage Crystal Radio Draws The Waves

The classic crystal radio was an oatmeal box with some wire and a few parts. [Michael Simpson] has something very different. He found an assembled Philmore “selective” radio kit. The simple kit had a coil, a germanium diode, and a crystal earphone.

We were sad when [Michael] accidentally burned a part of the radio’s coil. But–well–in the end, it all worked out. We’ll just say that and let you watch for yourself. The radio is simplicity itself, built on a wooden substrate with a very basic coil and capacitor tuned circuit. Continue reading “Vintage Crystal Radio Draws The Waves”

Mining And Refining: Uranium And Plutonium

When I was a kid we used to go to a place we just called “The Book Barn.” It was pretty descriptive, as it was just a barn filled with old books. It smelled pretty much like you’d expect a barn filled with old books to smell, and it was a fantastic place to browse — all of the charm of an old library with none of the organization. On one visit I found a stack of old magazines, including a couple of Popular Mechanics from the late 1940s. The cover art always looked like pulp science fiction, with a pipe-smoking father coming home from work to his suburban home in a flying car.

But the issue that caught my eye had a cover showing a couple of rugged men in a Jeep, bouncing around the desert with a Geiger counter. “Build your own uranium detector,” the caption implored, suggesting that the next gold rush was underway and that anyone could get in on the action. The world was a much more optimistic place back then, looking forward as it was to a nuclear-powered future with electricity “too cheap to meter.” The fact that sudden death in an expanding ball of radioactive plasma was potentially the other side of that coin never seemed to matter that much; one tends to abstract away realities that are too big to comprehend.

Things are more complicated now, but uranium remains important. Not only is it needed to build new nuclear weapons and maintain the existing stockpile, it’s also an important part of the mix of non-fossil-fuel electricity options we’re going to need going forward. And getting it out of the ground and turned into useful materials, including its radioactive offspring plutonium, is anything but easy.

Continue reading “Mining And Refining: Uranium And Plutonium”

Machining A Reciprocating Solenoid Engine

The reciprocating engine has been all the rage for at least three centuries. The first widely adopted engine of this type was the steam engine with a piston translating linear motion into rotational motion, but the much more common version today is found in the internal combustion engine. Heat engines aren’t the only ways of performing this translation, though. While there are few practical reasons for building them, solenoid engines can still do this job as well and, like this design from [Maciej Nowak Projects], are worth building just for the aesthetics alone.

The solenoid engine is built almost completely from metal stock shaped in a machine shop, including the solenoids themselves. The build starts by making them out of aluminum rod and then winding them with the help of a drill. The next step is making the frame to hold the solenoids and the bearings for the crankshaft. To handle engine timing a custom brass shutter mechanism was made to allow a set of infrared emitter/detector pairs to send signals that control each of the solenoids. With this in place on the crankshaft and the connecting rods attached the engine is ready to run.

Even though this solenoid engine is more of a project made for its own sake, solenoid engines are quite capable of doing useful work like this engine fitted into a small car. We’ve seen some other impressive solenoid engine builds as well like this V8 from [Emiel] that was the final iteration of a series of builds from him that progressively added more solenoid pistons to an original design.

Continue reading “Machining A Reciprocating Solenoid Engine”