We have two CVEs issued so far. CVE-2023-41064 is a classic buffer overflow in ImageIO, the Apple framework for universal file format read and write. Then CVE-2023-41061 is a problem in the iOS Wallet implementation. Release 16.6.1 of the mobile OS addresses these issues, and updates have rolled out for macOS 11, 12, and 13.
The LoRa radio communication system is useful for low-bandwidth communication, and as many readers will be aware its special skill lies in delivering long range. For most of us that range tops out at a few miles, but pushing the limits of what is possible for LoRa has resulted in some significant records falling. Most recently this has reached an impressive distance of 1336 kilometres, or 830 miles.
The record in question was set from near the Portuguese coast, from where LoRa beacons on a fishing boat and its buoys were able to open up a gateway on the Spanish Canary islands. The conductive surface of the sea makes an excellent aid to propagation, and from amateur radio experience we’d guess that tropospheric conditions aided by the summer weather would have something to do with it too.
Radio amateurs on those coasts and islands chase those conditions and live in hope of making a rare UHF contact across the ocean to the Americas or the Caribbean. The difference in their respective frequency allocations notwithstanding, we wonder whether the same might be possible using LoRa given a fortuitous atmosphere. We’re not quite sure whether a set of dual-band LoRa gateways could be made to test this idea though.
In an ideal world, every single battery pack for power tools would use the same physical interface and speak a clearly documented protocol with chargers. Since we live in a decidedly less-than-ideal world, we get to enjoy the fun pastime of reverse-engineering the interfaces and protocols of said battery packs.
Hooking up a logic analyzer to a M18 battery and charger.
A recent video from the [Tool Scientist] goes over what is already known about the Milwaukee M18 Redlink protocol, used with the manufacturer’s M18-series of batteries, before diving into some prodding and poking of these packs’ sensitive parts to see what comes out of their interface.
Previously, [Buy It Fix It] shared their findings on Reddit, covering the basic protocol, including the checksum method, but without an in-depth analysis of the entire charging protocol. Meanwhile [Quagmire Repair] performed an in-depth teardown and reverse-engineering of the M18 hardware, including the circuitry of the BMS.
Putting these two things together, [Tool Scientist] was able to quickly get some of his M18 packs strapped down into the analysis chair for both passive analysis, as well as the effect of overvoltage, undervoltage, overheating and freezing the battery pack on the output reported by the battery’s BMS.
One of the lists of commands and response messages obtained by [Tool Scientist] on YouTube.The result is a rather comprehensive list of instructions obtained under these various conditions, including a fault condition (05) returned by the BMS of one pack indicating its likely demise. Overall, it does not appear to be a particularly special (or well-designed) protocol, but it does make for a good reverse-engineering target, while adding to the body of collective knowledge on these widely available battery packs.
Hopefully the same inertia that prevents people from moving outside the designated power tool ecosystem due to the incompatible battery packs will also ensure that this level of knowledge will remain relevant for the foreseeable future, especially since the manufacturers of knock-off battery packs seem rather unwilling to share the results of their own reverse-engineering efforts.
It’s hard enough to get your hands on a forgotten computer from yesteryear. It’s even more difficult to get accessories like RAM expansions and graphics cards, because half the time they’re just discarded as random e-waste when they’re outside of their original context. [na103] has solved this problem for the DEC Rainbow 100 to a degree, by building new RAM expansions and graphics cards from scratch.
In the case of the RAM expansion, the design [na103] built is capable of boosting a Rainbow 100 computer to a full 896KB. This is more than other contemporary IBM machines like the 8088 XT, which had an architecture-enforced limit of 640 KB. It was rebuilt from some notes and original DEC schematics.
Linux has become one of the largest operating systems on the servers that run large websites, and hopefully, one day, it will be big in the desktop market too. Some of you may know how Linux as an operating system is structured, but have you ever wondered how the kernel itself is structured? Maybe you’ll find this colorful interactive map of the Linux kernel by [Costa Shulyupin] useful.
The interactive map depicts the major levels of abstraction and functionalities, dotted with over 400 prominent functions from the Linux kernel, which are also links to a cross-reference site so you can see all the definitions and usages. It divides the kernel into 7 rows and 7 columns containing domains with well-known terms like security and debugging, but also more obscure things like block devices and address families. These are also links, this time to the definition of the term in question. Finally, there are arrows flying everywhere, to show the relationships between all the many functions in the kernel. Continue reading “Find That Obscure Function With This Interactive Map Of The Linux Kernel”→
Vacuum forming is a handy thing to be able to do, and [3DSage] demonstrates how to do a bare-bones system that can form anything smaller than a dinner plate with little more than a 3D printed fitting to a vacuum cleaner, a heat gun, and a trip to the dollar store.
Plastic plates from the dollar store make excellent forming sheets, and in a variety of colors.
The 3D printed piece is a perforated table that connects to a vacuum cleaner hose, and [3DSage] mentions elsewhere that he tried a few different designs and this one worked the best. A cardboard box makes an expedient stand. The object being molded goes on the table, and when the vacuum is turned on, air gets sucked down into the holes.
As for the thermoforming itself, all that takes is some cheap plastic plates and a heat gun. Heat the plastic until it begins to droop, then slap it down onto the vacuum table and watch the magic happen. Using plastic plates like this is brilliant. Not only are they economical, but their rim serves as a built-in handle and helps support the sagging plastic.
Thermoforming plastic on a 3D-printed vacuum table and using 3D-printed molds definitely isn’t a system that will be cranking parts out all day long, but as long as one allows time for everything to cool off in between activations, it’ll get the job done. Nylon will hold up best but even PLA can be serviceable.
Watch it in action in the video embedded below. The video is actually about [3DSage] making adorable Game Boy themed s’mores, but here’s a link to the exact moment the vacuum forming part happens.
A rotating table is a super nifty tool for all kinds of photography and videography purposes. [Handy Bear] built a super simple example using some parts from IKEA.
The build starts with a Snudda, which is IKEA’s version of a Lazy Susan. It’s fitted with a 3D-printed gear to allow it to be easily driven. The platter is then fitted to a 3D printed base, which also contains the drive electronics, and driven by a small brushed DC gear motor. An off-the-shelf speed controller was employed to allow the speed of the platter to be varied as required.
[Handy Bear] does a good job of explaining how to build the project properly while avoiding the usual pitfalls. In particular, he demonstrates how to fit the gear to the platter without getting it off-axis. We also appreciate a design that can be built virtually anywhere thanks to using commonly-available parts.
We’ve featured other rotating tables before, like this open-ended design that was built on a much larger scale. Video after the break.