Pick-and-place Lego Prototyping

[youtube=http://www.youtube.com/watch?v=Ps59Hj9RIG0]

[Ned] tipped us off about his project for a class at Carnegie Mellon. Utilizing a Denso 6-AOF robotic arm they have built a rapid prototyping machine that uses Lego as the building material. LDraw, the open standard Lego CAD program, is used to build a model which is then translated into MATLAB files that the robotic arm can use for placement commands. Right now pieces need to be placed on a template for the robot to find and pick up.

It’s great that Lego pieces are used because they are readily available and inexpensive, but this type of precision robot makes the project unattainable for most tinkerers. Still, the concept is interesting and we could see an end goal being a more widely available machine. It’s not too much of a leap to image a RepRap type machine that takes internal measurements of a circuit board and the components, calculates inside case dimensions, then builds a prototype enclosure from common Lego pieces.

Rotating IPhone Dock From Legos

lego_rotating_iphone_dock

Hot on the heels of the aluminum dock and the Lego camera mount, [Steve] sent in his iPhone/iPod Touch dock made out of Lego bricks. It’s very stylish with a black and grey theme but we think the function makes this DIY spectacular. In the design [Steve] has included the ability to rotate the cradle so that the iPhone can be presented either vertically or horizontally. A step-by-step guide is not yet available but resourceful Lego lovers should be able to build this using his flickr set.

Keybot – Serial Controllable Keyboard Interface


[john] sent in his uncles Keybot project. The device accepts input (a parallel port in this case) and generates standard keyboard output. It allows a computer to create its keyboard input for itself or another machine. Personally, I go for serial consoles, but it’s a good study of our old friend the keyboard. (If legos are more your thing, you could do something like this.)

A finger points at a diagram of a battery with two green bars. Above it is another battery with four smaller green bars with a similar area to the first battery's two. The bottom batter is next to a blue box with a blue wave emanating from it and the top battery has a red box with a red wave emanating from it. Below the red wave is written "2x wavelength" and below the top battery is "1/2 energy in a photon."

What Are Photons, Anyway?

Photons are particles of light, or waves, or something like that, right? [Mithuna Yoganathan] explains this conundrum in more detail than you probably got in your high school physics class.

While quantum physics has been around for over a century, it can still be a bit tricky to wrap one’s head around since some of the behaviors of energy and matter at such a small scale aren’t what we’d expect based on our day-to-day experiences. In classical optics, for instance, a brighter light has more energy, and a greater amplitude of its electromagnetic wave. But, when it comes to ejecting an electron from a material via the photoelectric effect, if your wavelength of light is above a certain threshold (bigger wavelengths are less energetic), then nothing happens no matter how bright the light is.

Scientists pondered this for some time until the early 20th Century when Max Planck and Albert Einstein theorized that electromagnetic waves could only release energy in packets of energy, or photons. These quanta can be approximated as particles, but as [Yoganathan] explains, that’s not exactly what’s happening. Despite taking a few classes in quantum mechanics, I still learned something from this video myself. I definitely appreciate her including a failed experiment as anyone who has worked in a lab knows happens all the time. Science is never as tidy as it’s portrayed on TV.

If you want to do some quantum mechanics experiments at home (hopefully with more luck than [Yoganathan]), then how about trying to measure Planck’s Constant with a multimeter or LEGO? If you’re wondering how you might better explain electromagnetism to others, maybe this museum exhibit will be inspiring.

Continue reading “What Are Photons, Anyway?”

Whole-Fruit Chocolate: Skipping The Sugar By Using The Entire Cacao Pod

Images of whole-fruit chocolate formulations after kneading at 31 °C and subsequent heating to 50 °C. The ECP concentration in the sweetening gel and the added gel concentrations into the CM are shown on the x and y axis, respectively. (Credit: Kim Mishra et al., Nature Food, 2024)
Images of whole-fruit chocolate formulations after kneading at 31 °C and subsequent heating to 50 °C. The ECP concentration in the sweetening gel and the added gel concentrations in the CM are shown on the X and Y axes, respectively. (Credit: Kim Mishra et al., Nature Food, 2024)

It’s hard to imagine a world without chocolate, and yet it is undeniable that there are problems associated both with its manufacturing and its consumption. Much of this is due to the addition of sugar, as well as the discarding of a significant part of the cacao pod, which harbors the pulp and seeds. According to a study by [Kim Mishra] and colleagues in Nature Food, it might be possible to ditch the sugar and instead use a mixture of cacao pulp juice (CPJC) and endocarp powder (ECP), which are turned into a sweetening gel.

This gel replaces the combination of sugar with an emulsifier (lecithin or something similar) in current chocolate while effectively using all of the cacao pod except for the husk. A lab ran a small-scale production, with two different types of whole-fruit chocolate produced, each with a different level of sweetness, and given to volunteers for sampling. Samples had various ECP ratios in the gel and gel ratios in the chocolate mixture with the cacao mass (CM).

With too much of either, the chocolate becomes crumbly, while with too little, no solid chocolate forms. Eventually, they identified a happy set of ratios, leading to the taste test, which got an overall good score in terms of chocolate taste and sweetness. In addition to being able to skip the refined sugar addition, this manufacturing method also cuts out a whole supply chain while adding significantly more fiber to chocolate. One gotcha here is that this study focused on dark chocolate, but then some chocolate fans would argue vehemently that anything below 50% cacao doesn’t qualify as chocolate anymore, while others scoff at anything below 75%.

Matters of taste aside, this study shows a promising way to make our regular chocolate treat that much healthier and potentially greener. Of course, we want to know how it will print. Barring that, maybe how it engraves.

Illustrated Kristina with an IBM Model M keyboard floating between her hands.

Keebin’ With Kristina: The One With The Pocket Cyberdeck

When you find something you love doing, you want to do it everywhere, all the time. Such is the case with [jefmer] and programming. The trouble is, there is not a single laptop or tablet out there that really deals well with direct sunlight. So, what’s a hacker to do during the day? Stay indoors and suffer?

Image by [jefmer] via Hackaday.IO
The answer is a project like Pocket Pad. This purpose-built PDA uses a Nice! Nano and a pair of two very low-power ST7302-driven monochrome displays. They have no backlight, but they update much faster than e-paper displays. According to [jefmer], the brighter the ambient light, the more readable the displays become. What more could you want? (Besides a backlight?)

The miniature PocketType 40% is a little small for touch typing, but facilitates thumbs well. [jefmer] added those nice vinyl transfer legends and sealed them with clear nail polish.

All of the software including the keyboard scanner is written in Espruino, which is an implementation of JavaScript that targets embedded devices. Since it’s an interpreted language, [jefmer] can both write and execute programs directly on the Pocket Pad, using the bottom screen for the REPL. I’d sure like to have one of these in my pocket!
Continue reading “Keebin’ With Kristina: The One With The Pocket Cyberdeck”

All I Want For Mr. Christmas Is Some New Music

It’s true — you really can find anything (except maybe LEGO) in thrift stores. When [thecowgoesmoo] picked up a Mr. Christmas Symphonium music box one day, they knew they wanted to make it play more than just the standard Christmas and classical fare that ships with the thing.

So they did what any self-respecting hacker would do, and they wrote a MATLAB script that generates new disk silhouette images that they then cut from cardboard with a laser cutter. They also used various other materials like a disposable cutting mat. Really, whatever is lying around that’s stiff enough and able to be cut should work. You know you want to hear Van Halen’s “Jump” coming from a tinkling music box, don’t you? Be sure to check out the video demonstration after the break.

If you don’t want to wait around until a Mr. Christmas lands in your lap, why not make your own hand-cranked music box and accompanying scores?

Continue reading “All I Want For Mr. Christmas Is Some New Music”