Print PLA In PLA With A Giant Molecular Model Kit

It isn’t too often we post a hack that’s just a pure 3D print with no other components, but for this Giant Molecular Model kit by [3D Printy], we’ll make an exception. After all, even if you print with PLA every day, how often do you get to play with its molecular bonds? (If you want to see that molecule, check out the video after the break.)

There are multiple sizes of bonds to represent bond lengths, and two styles: flexible and firm. Flexible bonds are great for multiple covalent bonds, like carbon-carbon bonds in organic molecules. The bonds clip to caps that screw in to the atoms; alternately a bond-cap can screw the atoms together directly. A plethora of atoms is available, in valence values from one to four. The two-bond atom has 180 and 120-degree variations for greater accuracy.  In terms of the chemistry this kit could represent, you’re only limited by your imagination and how long you are willing to spend printing atoms and bonds.

[3D Printy] was kind enough to release the whole lot as CC0 Public Domain, so we might be seeing these at craft fairs, as there’s nothing to keep you from selling the prints. Honestly, we can only hope; from an educational standpoint, this is a much better use of plastic than endless flexy dragons.

If you’d prefer your chemistry toys help you do chemistry, try this fidget spinner centrifuge. Perhaps you’d rather be teaching electronics instead?

Continue reading “Print PLA In PLA With A Giant Molecular Model Kit”

Radio Apocalypse: Meteor Burst Communications

The world’s militaries have always been at the forefront of communications technology. From trumpets and drums to signal flags and semaphores, anything that allows a military commander to relay orders to troops in the field quickly or call for reinforcements was quickly seized upon and optimized. So once radio was invented, it’s little wonder how quickly military commanders capitalized on it for field communications.

Radiotelegraph systems began showing up as early as the First World War, but World War II was the first real radio war, with every belligerent taking full advantage of the latest radio technology. Chief among these developments was the ability of signals in the high-frequency (HF) bands to reflect off the ionosphere and propagate around the world, an important capability when prosecuting a global war.

But not long after, in the less kinetic but equally dangerous Cold War period, military planners began to see the need to move more information around than HF radio could support while still being able to do it over the horizon. What they needed was the higher bandwidth of the higher frequencies, but to somehow bend the signals around the curvature of the Earth. What they came up with was a fascinating application of practical physics: meteor burst communications.

Continue reading “Radio Apocalypse: Meteor Burst Communications”

Supercon 2024: An Immersive Motion Rehabilitation Device

When you’ve had some kind of injury, rehabilitation can be challenging. You often need to be careful about how you’re using the affected parts of your body, as well as pursue careful exercises for repair and restoration of function. It can be tedious and tiring work, for patients and treating practitioners alike.

Juan Diego Zambrano, Abdelrahman Farag, and Ivan Hernandez have been working on new technology to aid those going through this challenging process. Their talk at the 2024 Hackaday Supercon covers an innovative motion monitoring device intended to aid rehabilitation goals in a medical context.

Continue reading “Supercon 2024: An Immersive Motion Rehabilitation Device”

Train With Morse Master

Morse code can be daunting to learn when you’re new to the game, particularly if you need it to pass your desired radio license. However, these days, there are a great many tools to aid in the learning process. A good example is the Morse Master from [Arnov Sharma].

The Morse Master is a translator for Morse code, which works in two ways. You can access it via a web app, and type in regular letters which it then flashes out as code on its in-built LEDs. Alternatively, you can enter Morse manually using the physical key, and the results will be displayed on the web app. The Morse key itself is built into the enclosure using 3D printed components paired with a Cherry-style keyboard switch. It’s perhaps not the ideal solution for fast keying, with its limited rebound, but it’s a quick and easy way to make a functional key for practice purposes. If you want to go faster, though, you might want to upgrade to something more capable. We’d also love to see a buzzer added, since Morse is very much intended as an auditory method of communication.

We’ve seen some other great Morse code trainers before, too. If you’ve trained yourself in this method of communication, don’t hesitate to share your own learning tips below.

Continue reading “Train With Morse Master”

Configurable Custom Logic (CCL) Block Diagram.

Getting Started With ATtiny Configurable Custom Logic (CCL)

In the Microchip tinyAVR {0,1,2}-series we see Configurable Custom Logic (CCL) among the Core Independent Peripherals (CIP) available on the chip. In this YouTube video [Grug Huhler] shows us how to make your own digital logic in hardware using the ATtiny CCL peripheral.

If you have spare pins on your tinyAVR micro you can use them with the CCL for “glue logic” and save on your bill of materials (BOM) cost. The CCL can do simple to moderately complex logic, and it does it without the need for support from the processor core, which is why it’s called a core independent peripheral. A good place to learn about the CCL capabilities in these tinyAVR series is Microchip Technical Brief TB3218: Getting Started with Configurable Custom Logic (CCL) or if you need more information see a datasheet, such as the ATtiny3226 datasheet mentioned in the video.

Continue reading “Getting Started With ATtiny Configurable Custom Logic (CCL)”

Radio Repeaters In The Sky

One of the first things that an amateur radio operator is likely to do once receiving their license is grab a dual-band handheld and try to make contacts with a local repeater. After the initial contacts, though, many hams move on to more technically challenging aspects of the hobby. One of those being activating space-based repeaters instead of their terrestrial counterparts. [saveitforparts] takes a look at some more esoteric uses of these radio systems in his latest video.

There are plenty of satellite repeaters flying around the world that are actually legal for hams to use, with most being in low-Earth orbit and making quick passes at predictable times. But there are others, generally operated by the world’s militaries, that are in higher geostationary orbits which allows them to serve a specific area continually. With a specialized three-dimensional Yagi-Uda antenna on loan, [saveitforparts] listens in on some of these signals. Some of it is presumably encrypted military activity, but there’s also some pirate radio and state propaganda stations.

There are a few other types of radio repeaters operating out in space as well, and not all of them are in geostationary orbit. Turning the antenna to the north, [saveitforparts] finds a few Russian satellites in an orbit specifically designed to provide polar regions with a similar radio service. These sometimes will overlap with terrestrial radio like TV or air traffic control and happily repeat them at brief intervals.

[saveitforparts] has plenty of videos looking at other satellite communications, including grabbing images from Russian weather satellites, using leftover junk to grab weather data from geostationary orbit, and accessing the Internet via satellite with 80s-era technology.

Continue reading “Radio Repeaters In The Sky”

A Gentle Introduction To COBOL

As the Common Business Oriented Language, COBOL has a long and storied history. To this day it’s quite literally the financial bedrock for banks, businesses and financial institutions, running largely unnoticed by the world on mainframes and similar high-reliability computer systems. That said, as a domain-specific language targeting boring business things it doesn’t quite get the attention or hype as general purpose programming or scripting languages. Its main characteristic in the public eye appears be that it’s ‘boring’.

Despite this, COBOL is a very effective language for writing data transactions, report generating and related tasks. Due to its narrow focus on business applications, it gets one started with very little fuss, is highly self-documenting, while providing native support for decimal calculations, and a range of I/O access and database types, even with mere files. Since version 2002 COBOL underwent a number of modernizations, such as free-form code, object-oriented programming and more.

Without further ado, let’s fetch an open-source COBOL toolchain and run it through its paces with a light COBOL tutorial.

Continue reading “A Gentle Introduction To COBOL”