Smart Ball Technology Has Reached Football, But The Euros Show Us It’s Not Necessarily For The Better

Adidas brought smart balls to Euro 2024, for better or worse. Credit: Adidas

The good old fashioned game of football used to be a simple affair. Two teams of eleven, plus a few subs, who were all wrangled by a referee and a couple of helpful linesmen. Long ago, these disparate groups lived together in harmony. Then, everything changed when VAR attacked.

Suddenly, technology was being used to adjudicate all kinds of decisions, and fans were cheering or in uproar depending on how the hammer fell. That’s only become more prevalent in recent times, with smart balls the latest controversial addition to the world game. With their starring role in the Euro 2024 championship more than evident, let’s take a look at what’s going on with this new generation of intelligent footballs.

Continue reading “Smart Ball Technology Has Reached Football, But The Euros Show Us It’s Not Necessarily For The Better”

Illustrated Kristina with an IBM Model M keyboard floating between her hands.

Keebin’ With Kristina: The One With The 24-Hour Macro Pad

They say Rome wasn’t built in a day, but this great little music-controlling macro pad by [nibbler] actually was. Why? Because as Hackaday’s own [Donald Papp] reminded us, we all need a win sometimes, especially as projects drag on and on without any end in sight.

A small macro pad with six buttons.
Image by [nibbler] via Toxic Antidote
As [nibbler] points out, what really constitutes a win? Set the bar too low and it won’t feel like one at all. Too high, and you may become too discouraged to cross the finish line. With that in mind, [nibbler] set the bar differently, limiting themselves to what could be done in the one day per week they have to devote time to electronic matters.

One-day turnaround usually means using parts on hand and limiting oneself to already-learned skills and techniques. No problem for [nibbler], who, armed with an Arduino Leonardo Tiny and a some colorful push buttons, set about designing a suitable enclosure, and then putting it all together. Was this a win? [nibbler] says yes, and so do I.

Continue reading “Keebin’ With Kristina: The One With The 24-Hour Macro Pad”

Using Forward- And Reverse-Osmosis To Let Astronaut EVA Suits Produce Fresh Water From Urine

An uncomfortable reality with the spacesuits used for extravehicular activities (EVA) – commonly referred to as spacewalks – is that the astronaut spends hours in them, during which normal bodily functions like urinating and defecating continue. The current EVA record at the ISS is currently a hair under nine hours, necessitating a new approach. A team of researchers have now pitched the idea of an in-suit water recovery system with an article by [Sofia Etlin] and colleagues as published in Frontiers in Space Technologies.

For the current Extravehicular Mobility Unit (EMU) EVA spacesuit the current solution is what is called the MAG: the Maximum Absorbency Garment, which is effectively a fancy adult diaper with sodium polyacrylate as absorbent for up to 2 L of fluids. It replaced the urine collection device (UCD) that was used until female astronauts joined the astronaut corps in the 1970s. Generally astronauts aim to not defecate until they finish their EVA, which leaves urinating and the related activity of rehydrating as the spacesuits only have 0.95 L of water that has to last the duration of the spacewalk. Continue reading “Using Forward- And Reverse-Osmosis To Let Astronaut EVA Suits Produce Fresh Water From Urine”

PCB Design Review: HAB Tracker With ATMega328P

Welcome to the Design Review Central! [VE3SVF] sends us their board, and it’s a HAB (High Altitude Balloon) tracker board. It’s got the venerable ATMega28P on it, a LoRa modem and a GPS module, and it can be powered from a LiIon battery. Stick this board with its battery onto a high-altitude balloon, have it wake up and transmit your coordinates every once in a while, and eventually you’ll find it in a field – if you’re lucky. Oherwise, it will get stuck hanging on a tree branch, and you will have to use a quadcopter to try and get it down, and then, in all likelihood, a second quadcopter so that you can free the first one. Or go get a long ladder.

The ATMega328P is tried and true, and while it’s been rising in price, it’s still available – with even an updated version that sports a few more peripherals; most importantly, you’re sure to find a 328P in your drawer, if not multiple. Apart from that, the board uses two modules from a Chinese manufacturer, G-Nice, for both GPS and Lora. Both of these modules are cheap, making this tracker all that more accessible; I could easily see this project being sold as a “build your own beacon” kit!

Let’s make it maybe a little nicer, maybe a little cheaper, and maybe decrease the power consumption a tad along the way. We’ll use some of the old tricks, a few new ones, and talk about project-specific aspects that might be easy to miss.

Continue reading “PCB Design Review: HAB Tracker With ATMega328P”

Solar Dynamics Observatory: Our Solar Early Warning System

Ever since the beginning of the Space Age, the inner planets and the Earth-Moon system have received the lion’s share of attention. That makes sense; it’s a whole lot easier to get to the Moon, or even to Mars, than it is to get to Saturn or Neptune. And so our probes have mostly plied the relatively cozy confines inside the asteroid belt, visiting every world within them and sometimes landing on the surface and making a few holes or even leaving some footprints.

But there’s still one place within this warm and familiar neighborhood that remains mysterious and relatively unvisited: the Sun. That seems strange, since our star is the source of all energy for our world and the system in general, and its constant emissions across the electromagnetic spectrum and its occasional physical outbursts are literally a matter of life and death for us. When the Sun sneezes, we can get sick, and it has the potential to be far worse than just a cold.

While we’ve had a succession of satellites over the last decades that have specialized in watching the Sun, it’s not the easiest celestial body to observe. Most spacecraft go to great lengths to avoid the Sun’s abuse, and building anything to withstand the lashing our star can dish out is a tough task. But there’s one satellite that takes everything that the Sun dishes out and turns it into a near-constant stream of high-quality data, and it’s been doing it for almost 15 years now. The Solar Dynamics Observatory, or SDO, has also provided stunning images of the Sun, like this CGI-like sequence of a failed solar eruption. Images like that have captured imaginations during this surprisingly active solar cycle, and emphasized the importance of SDO in our solar early warning system.

Continue reading “Solar Dynamics Observatory: Our Solar Early Warning System”

Hack All The Things, Get All The Schematics

When I was growing up, about 4 or 5 years old, I had an unorthodox favourite type of reading material: service manuals for my dad’s audio equipment. This got to the point that I kept asking my parents for more service manuals, and it became a running joke in our family for a bit. Since then, I’ve spent time repairing tech and laptops in particular as a way of earning money, hanging out at a flea market in the tech section, then spending tons of time at our hackerspace. Nowadays, I’m active in online hacker groups, and I have built series of projects closely interlinked with modern-day consumer-facing tech.

Twenty three years later, is it a wonder I have a soft spot in my heart for schematics? You might not realize this if you’re only upcoming in the hardware hacking scene, but device schematics, whichever way you get them, are a goldmine of information you can use to supercharge your projects, whether you’re hacking on the schematic-ed device itself or not. What’s funny is, not every company wants their schematics to be published, but it’s ultimately helpful for the company in question, anyway.

If you think it’s just about repair – it’s that, sure, but there’s also a number of other things you might’ve never imagined you can do. Still, repair is the most popular one.
Continue reading “Hack All The Things, Get All The Schematics”

Korean Multifunction Counter Teardown

[Thomas Scherrer] likes to tear down old test equipment, and often, we remember the devices he opens up or — at least — we’ve heard of them. However, this time, he’s got a Hung Chang HC-F100 multifunction counter, which is a vintage 1986 instrument that can reach 100 MHz.

Inside, the product is clearly a child of its time period. There’s a transformer for the linear supply, through-hole components, and an Intersil frequency counter on a chip. Everything is easy to get to and large enough to see.

Continue reading “Korean Multifunction Counter Teardown”