Wimshurst

3D Printed Wimshurst Machine

Steampunk extraordinaire [Jake von Slatt] has released his latest creation. This time he’s built a Wimshurst machine from mostly 3D printed parts. The Wimshurst machine is an electrostatic generator and was originally invented in the late 1800’s by James Wimshurst. It uses two counter-rotating disks to generate an electrostatic charge which is then stored in two Leyden jars. These jars are also connected to a spark gap. When the voltage raises high enough, the jars can discharge all at once by flashing a spark across the gap.

[Jake’s] machine has a sort of Gothic theme to it. He designed the parts using Autodesk’s 123D Design. They were initially printed in PLA. Skate bearings were used in the center of the disks to ensure a smooth rotation. The axle was made from the fiberglass shaft of a driveway reflector. The vertical supports were attached the base with machine screws.

The Leyden jars were made from sections of clear plastic tube. The caps for the jars were 3D printed and are designed to accept a short length of threaded 1/8″ pipe. Copper wire was used for the interior contacts and are held in place with electrical tape. The metal sectors on each disk were made from pieces of cut aluminum tape.

You may be wondering how this machine works if it’s almost entirely made out of plastic. [Jake] actually painted most of the parts with a carbon paint. This makes them electrically conductive and he can then use the parts to complete electrical circuits. Unfortunately he found this to be rather ineffective. The machine does work, but it only produces sparks up to 1/2″ in length. For comparison, his other machine is capable of 6″ sparks using similar sized Leyden jars.

[Jake] actually tried rebuilding this project using ABS, thinking that the PLA may have been collecting moisture from his breath, but the result is still only 1/2″ sparks. He suspects that the bumpy surface of the plastic parts may be causing the charge to slowly leak away, preventing a nice build up. He’s released all of his designs on Thingiverse in case any other hackers want to give it a whirl.

PS4 NES

Add Extra Storage To Your PS4 With Retro Flair

[Frank] came up with a clever way to extend the storage of his PS4. He’s managed to store his digital PS4 games inside of storage devices in the shape of classic NES cartridges. It’s a relatively simple hack on the technical side of things, but the result is a fun and interesting way to store your digital games.

He started out by designing his own 3D model of the NES cartridge. He then printed the cartridge on his Ultimaker 3D printer. The final print is a very good quality replica of the old style cartridge. The trick of this build is that each cartridge actually contains a 2.5″ hard drive. [Frank] can store each game on a separate drive, placing each one in a separate cartridge. He then prints his own 80’s style labels for these current generation games. You would have a hard time noticing that these games are not classic NES games at first glance.

Storing the game in cartridge form is one thing, but reading them into the PS4 is another. The trick is to use a SATA connector attached to the PS4’s motherboard. [Frank’s] project page makes it sound like he was able to plug the SATA cable in without opening the PS4, by attaching the connector to a Popsicle stick and then using that to reach in and plug the connector in place. The other end of the SATA cable goes into a custom 3D printed housing that fits the fake NES cartridges. This housing is attached to the side of the PS4 using machine screws.

Now [Frank] can just slide the cartridge of his choice into the slot and the PS4 instantly reads it. In an age where we try to cram more and more bits into smaller and smaller places, this may not be the most practical build. But sometimes hacking isn’t about being practical. Sometimes it’s simply about having fun. This project is a perfect example. Continue reading “Add Extra Storage To Your PS4 With Retro Flair”

CNC Plotter Uses Only The Good DVD Drive Parts

It wasn’t that long ago that wanting to own your own 3D printer meant learning as much as you possibly could about CNC machines and then boostrapping your first printer. Now you can borrow time on one pretty easily, and somewhat affordably buy your own. If you take either of these routes you don’t need to know much about CNC, but why not use the tool to learn? This is what [Wootin24] did when building a 3D printed plotter with DVD drive parts.

Plotters made from scrapped floppy, optical drives, and printers are a popular hand, and well worth a weekend of your time. This one, however, is quite a bit different. [Wootin24] used the drives to source just the important parts for CNC precision: the rods, motors, motors, and bearings. The difference is that he designed and 3D printed his own mounting brackets rather than making do with what the optical drive parts are attached to.

This guide focuses on the gantries and the mechanics that drive them… it’s up to you to supply the motor drivers and electrical side of things. He suggests RAMPS but admins he used a simple motor driver and Arduino since they were handy.

A Modular Thumbstick Extension For Gamers With Disabilities

Hackaday alum [Caleb Kraft] has been busy working on control modifications for gamers with disabilities. His latest release is a modular system of thumbstick extensions for the Xbox 360 and Xbox One. Since starting The Controller Project, one of [Caleb’s] goals has been to create a system to facilitate the use of analog thumbsticks. Now that he has a few controller mods under his belt, [Caleb] decided to attack the problem head on. Rather than print a custom adapter for each gamer, he’s created a set of 3D printed extensions which can be mixed and matched to produce the perfect controller mod.

The base fits perfectly over the Xbox thumbstick. The fit is tight enough to stand up to some serious gaming, but can be easily removed with no permanent change to the controller. Extensions stack on top of the base to build up a large easy to grasp stick. There are straight and angled extensions to accommodate specific disabilities. The stick can be capped off with a rounded tip or an easy to grip knob. The exertions are designed to fit together loosely for testing. Once the gamer finds a perfect stack of extensions, a bit of glue locks everything together.

The best part is that [Caleb] has released the files for the entire system. 3D printers are becoming common enough that nearly everyone has access to a printer, or knows someone who does.  Click past the break to see [Caleb] demonstrate the modular thumbstick extension system!

Continue reading “A Modular Thumbstick Extension For Gamers With Disabilities”

OctoPrint On Router

Dumpster Dive Results In 3D Print Server Project

3D Printers are super convenient when you need a part quickly. However, they can be seriously inconvenient if the 3D printer has to be tethered to your computer for the duration of the entire print. [Matt] purchased a Makerfarm i3v printer and has been using it a bunch. The only thing he wasn’t crazy about was having it occupy his computer while printing objects. Then one day [Matt] was dumpster diving (don’t roll your eyes, we all do it) and found a Netgear WNDR3700v1 WiFi router. This particular router has a USB port and it made [Matt] think, “can I use this to run my printer?

[Matt] started by checking out 3D print server software OctoPrint and found out that it was entirely written in Python. He had a feeling that he could get Python running on that found Netgear router. The first step was to install OpenWrt to the router and configure it as a client. That was straight forward and went well.  The router only had one USB port so a hub was necessary in order to connect a USB drive and the printer. The USB drive was necessary because the router itself did not have enough memory for OctoPrint. Installing OctoPrint to the router was a little complicated and took a bit of trial and error but [Matt] figured out the best method and documented that on his site for anyone interested in doing the same. So now, [Matt] can use his computer’s web browser to access OctoPrint on the Netgear router, start a print and go back to using his computer without fear of a failed print. OctoPrint and the router are now solely responsible for controlling the printer.

If you’re interested in more ways to remotely control your printer, check this out.

Formlabs 3d printed speaker

3D Printed Speaker Pushes Rapid Prototyping Boundaries

We think Formlabs has really figured out the key to advertising their line of 3D printers — just design really cool stuff that you can 3D print in resin, and release them publicly! To celebrate a firmware upgrade to the Form 1+, they’ve designed and released this really cool 3D printed speaker which you can make yourself.

Designed by [Adam Lebovitz], the speaker can be printed in just a few jobs, using their flexible resin for the dynamic components. It even sounds pretty damn good.

As you can see in the following exploded view of the speaker, almost the entire thing is 3D printed out of just two materials — minus some copper wire, 37 disc magnets, and one cap screw.

Continue reading “3D Printed Speaker Pushes Rapid Prototyping Boundaries”

3D Printed Surfboard

You whippersnappers these days with your 3D printers! Back in our day, we had to labor over a blank for hours, getting all sweaty and covered in foam dust. And it still wouldn’t come out symmetric. Shaping a surfboard used to be an art, and now you’re just downloading software and slinging STLs.

Joking aside, [Jody] made an incredible surfboard (yes, actual human-sized surfboard) out of just over 1 kilometer of ABS filament, clocking 164 hours of printing time along the way. That’s a serious stress test, and of course, his 3D printer broke down along the way. Then all the segments had to be glued together.

But the printing was the easy part; there’s also fiberglassing and sanding. And even though he made multiple mock-ups, nothing ever goes the same on opening night as it did in the dress rehearsal. But [Jody] persevered and wrote up his trials and tribulations, and you should give it a look if you’re thinking of doing anything large or in combination with fiberglass.

Even the fins are 3D printed and the results look amazing! We can’t wait for the ride report.

Shaka.