Robot Races A Little Smarter To Go Faster

[Steven Gong] is attending the University of Waterloo and found himself with a 1/10th scale F1TENTH autonomous RC car. What better use of a fast RC car with some smarts than to race itself around your computer science building?

Onboard is an Nvidia Jetson NX (not the new Nvidia Jetson Orin), a lidar module, and a depth camera. The code runs on top of ROS2, and the results were impressive. [Steven] mapped out the fifth floor of his building at 6 am using SLAM and the onboard sensors. With a map, he created a rough track for his car to follow. First, the car needs to know when to brake and when to hit the gas. With the basics out of the way, [Steven] moved on to the fun part. He wrote code to generate a faster racing line. Every turn has an optimal speed and approach, but each turn affects the next turn, which turns it into a rather exciting optimization problem.

Along the way, [Steven] fixed the gearbox, tuned the PID steering loop, and removed the software speed limits. It’s impressive engineering, and we love seeing the car zoom around faster and faster. The car eventually hit 25km/h, which seems pretty fast for indoors. The code and more details are up on GitHub.

However, if you’re curious about playing around with self-driving, perhaps a much smaller scale Pi Zero-based racer might be more your speed. Video after the break.

Continue reading “Robot Races A Little Smarter To Go Faster”

RC Car Gets F1-Style DRS Rear Wing

DRS, or the Drag Reduction System, has become a key part of Formula 1 in the past decade. [Engineering After Hours] decided to implement the same system on an RC car instead.

The DRS system was implemented in Formula 1 to increase passing in the series. By moving a flap in the rear wing of the race cars, drag could be reduced, allowing a car to attain a higher top speed on the straights. The racing series limited the activation of the DRS wing to only cars following closely behind another. This artificially enabled them to gain a speed boost over the car in front to aid passing.

[Engineering After Hours] wanted to see if a tiny wing on a small RC car could work the same way. It would fundamentally come down to whether moving a tiny wing element would appreciably change the car’s drag or not. Naturally, on such a small scale, attaining high speeds would be necessary to detect much difference. At lower speeds, the difference in drag would likely be too negligible to notice.

The RC-scale DRS system fundamentally does work. With DRS engaged, flattening out the rear wing elements noticably reduced downforce at the rear. With the DRS not engaged, though, the rear wing on the car was creating so much downforce that the car was squatting at the rear and occasionally flipping end over end. [Engineering After Hours] didn’t get any top speed measurements, but estimated that the wing could potentially increase top speed by up to 7 mph with the DRS enabled.

We’ve seen [Engineering After Hours] bring other fun motorsport tech to RC cars before, too, like this amazing fan car build.

Continue reading “RC Car Gets F1-Style DRS Rear Wing”

Ground Effect Aerodynamics On An RC Car

Ground effect aerodynamics will return to Formula 1 in a big way in the 2022 season, hopefully washing away the bad taste left in fan’s mouths after the recent controversial season decider. [Engineering After Hours] has experimented with F1 aerodynamics on RC cars before, and decided that it was time to try and implement a proper ground-effect design himself.

The aim of ground effect aerodynamics is to create a constriction for airflow between the bottom of the car and the ground underneath. This constriction accelerates the flow beneath the car, and as per Bernoulli’s principle, causes a corresponding pressure drop, sucking the car down onto the track. Viscosity also plays a role; from the car’s perspective, the road beneath the vehicle is moving backwards at some speed, pulling on the fluid thanks to the boundary layer on the ground itself. This further helps increase the strength of the effect.

A vacuum-formed undertray complete with side skirts was installed on the RC car in order to generate ground effect downforce. A quick test with a leaf blower indicates the system works, and that the side skirts are a key component.

Lateral acceleration was significantly improved by around 20% in testing with the ground effects installed, though [Engineering After Hours] admits that without a wind tunnel, the results aren’t the most scientific. However, with the undertray being relatively lightweight, we suspect the aero elements are likely providing plenty of benefit without too much of a negative effect on acceleration or handling.

Check out some of the other aero experiments [Engineering After Hours] has undertaken, too. Video after the break. Continue reading “Ground Effect Aerodynamics On An RC Car”

Mercedes Split Turbo Was A Game Changer In Formula 1

In 2014, Formula 1 switched away from V8 engines, electing instead to mandate all teams race with turbocharged V6 engines of 1.6 litres displacement, fitted with advanced energy recovery systems. The aim was to return Formula 1 to having some vague notion of relevance to modern road car technologies, with a strong focus on efficiency. This was achieved by mandating maximum fuel consumption for races, as well as placing a heavy emphasis on hybrid technology.

The Mercedes W05 Hybrid was the first of 7 championship-winning F1 cars from the British-based, German-funded team. It quickly showed the value of the team’s split-turbo technology.

Since then, Mercedes have dominated the field in what is now known as the turbo-hybrid era. The German team has taken home every drivers and constructors championship since, often taking home the crown well before the season is over. Much has been made of the team’s engine as a key part of this dominance, widely considered to be more powerful and efficient than the competition at all but a few select races in the last seven years, and much of the credit goes to the company’s innovative split-turbo system. Today, we’ll explore why the innovation was such a game changer in Formula 1.

Continue reading “Mercedes Split Turbo Was A Game Changer In Formula 1”

The Rise And Fall Of The Fan Car

The advent of aerodynamic wings in motorsport was one of the most dramatic changes in the mid-20th century. Suddenly, it was possible to generate more grip at speed outside of altering suspension setups and fitting grippier tyres. However, it was just the beginning, and engineers began to look at more advanced ways of generating downforce without the drag penalty incurred by fitting wings to a racecar.

Perhaps the ultimate expression of this was the fan car. Mechanically complex and arguably dangerous, the technology offered huge downforce with minimal drag. However, the fan car’s time in the spotlight was vanishingly brief, despite the promise inherent in the idea. Let’s take a look at the basic theory behind the fan car, how they worked in practice, and why we don’t see them on racetracks today. Continue reading “The Rise And Fall Of The Fan Car”

Hackaday Podcast 086: News Overflow, Formula 1/3 Racer, Standing Up For Rubber Duckies, And Useless Machine Takes A Turn

Hackaday editors Elliot Williams and Mike Szczys peruse the world of hacks. There was so much news this week that we lead off the show with a rundown to catch you up. Yet there is still no shortage of hardware hacks, with prosthetic legs for your rubber ducky, a RC cart that channels the spirit of Formula 1, and a project that brings 80’s video conferencing hardware to Zoom. There’s phosphine gas on Venus and unlimited hacking projects inside your guitar. The week wouldn’t be complete without the joy of riffing on the most useless machine concept.

Take a look at the links below if you want to follow along, and as always, tell us what you think about this episode in the comments!

Take a look at the links below if you want to follow along, and as always, tell us what you think about this episode in the comments!

Direct download (60 MB or so.)

Continue reading “Hackaday Podcast 086: News Overflow, Formula 1/3 Racer, Standing Up For Rubber Duckies, And Useless Machine Takes A Turn”

The OpenR/C Project

The Open RC Truggy that started it all.
The Open RC Truggy that started it all.

[Daniel Norée] started the OpenR/C project back in 2012 when he bought a Thing-O-Matic. In search of a project to test out his new printer, he set his sights on a remote controlled car, which as he put it,”… seemed like the perfect candidate, as it presents a lot of challenges with somewhat intricate moving parts along with the need for a certain level of precision and durability.

After releasing his second design, the OpenR/C Truggy, he realized a community was forming around this idea, and needed a place to communicate. So, he created a Google+ group. Today, the Truggy has been downloaded over 100,000 times and the Google group has over 5,000 members. It’s a very active community of RC and 3d printing enthusiasts who are testing the limits of what a 3d printer can do.

Continue reading “The OpenR/C Project”