Lidar House Looks Good, Looks All Around

A lighthouse beams light out to make itself and its shoreline visible. [Daniel’s] lighthouse has the opposite function, using lasers to map out the area around itself. Using an Arduino and a ToF sensor, the concept is relatively simple. However, connecting to something that rotates 360 degrees is always a challenge.

The lighthouse is inexpensive — about $40 — and small. Small enough, in fact, to mount on top of a robot, which would give you great situational awareness on a robot big enough to support it. You can see the device in action in the video below. Continue reading “Lidar House Looks Good, Looks All Around”

Skittle Sorter Makes Long Task Shorter

One of the most common complaints fielded by the agents of Big Candy regards the non-homogenous nature of their products. Skittles and M&Ms are two egregious offenders in this area, and it’s left up to the determined consumer to handle sorting these candies themselves. Of course, you can always do it by hand, but as we all know – machines will do the work.

This Skittle sorter is the creation of [Lewis] of [DIY Machines], and it’s a build targeted at the beginner level. Constructed out of cardboard, it uses a pair of servos to handle the transport of the candies into their requisite colored bins, via a rotating disc and chute. Skittles are scanned with a TCS34725 color scanner hooked up to an Arduino Nano, which changes the angle of the output chute to dump the candy in the proper location. The hopper is able to handle a standard 180 gram bag of Skittles without problems.

[Lewis] does a great job explaining each stage of the build, from the mechanical and electronic side of things, to the required calibrations to make everything play together nicely. The project teaches builders a multiude of useful lessons, like how to use limit switches and other concepts of automation.  We’ve featured [Lewis] on these pages before, too; his stylish shelf clock is a particular delight. Video after the break.

Continue reading “Skittle Sorter Makes Long Task Shorter”

Automatic Sanitizer For Your Cupholder

Why is it so hard to remember to use hand sanitizer between going into the store and driving back home? We tried hanging a bottle off the windshield wiper stalk, but it gets in the way and is hard to use and share with passengers. The ideal thing would be to have a hands-free pump in the car that reminds you to use it.

You don’t have to wire this to the ignition or anything — all you have to do is power it with the cigarette lighter (or straight-up outlet, if you’re lucky). Every time you turn the key, this pump powers up and performs a little song to remind you to use it. Electronically speaking, it couldn’t be simpler — an Arduino UNO reads your hand from the distance sensor and activates a servo that dispenses three short pumps of isopropyl alcohol. Check it out in action after the break.

Want a hands-free solution for the house? Just build something you can step on.

Continue reading “Automatic Sanitizer For Your Cupholder”

Gigantic Working Arduino Uses 1/4″ Cables

What is it about larger-than-life versions of things that makes them so awesome? We’re not sure exactly, but this giant working Arduino definitely has the ‘it’ factor, whatever that may be. It’s twelve times the size of a regular Uno and has a Nano embedded in the back of it. To give you an idea of the scale, the reset button is an arcade button.

The Arduino Giga’s PCB is made of 3/4″ plywood, and the giant components represent a week and a half of 3D printing. The lettering and pin numbers are all carved on a CNC and filled in with what appears to be caulk. They didn’t get carved out deeply enough the first time around, but [byte sized] came up with a clever way to perfectly re-register the plywood so it carved in exactly the same places.

Although we love everything about this build, our favorite part has to be the way that [byte sized] made the female headers work. Each one has a 1/4″ audio jack embedded inside of it (a task which required a special 3D printed tool), so patch cables are the new jumper cables. [byte sized] put it to the test with some addressable RGB LEDs on his Christmas tree, which you can see in the build video after the break.

You can buy one of those giant working 555 timer kits, but why not just make one yourself?

Continue reading “Gigantic Working Arduino Uses 1/4″ Cables”

Easy Frequency Counter Looks Good, Reads To 6.5 MHz

We were struck by how attractive [mircemk’s] Arduino-based frequency counter looks. It also is a reasonably simple build. It can count up to 6.5 MHz which isn’t that much, but there’s a lot you can do even with that limitation.

The LED display is decidedly retro. Inside a very modern Arduino Nano does most of the work. There is a simple shaping circuit to improve the response to irregular-shaped input waveforms. We’d have probably used a single op-amp as a zero-crossing detector. Admittedly, that’s a bit more complex, but not much more and it should give better results.

Continue reading “Easy Frequency Counter Looks Good, Reads To 6.5 MHz”

Mind-Controlled Beer Pong Gets Easier As You Drink

Wouldn’t it be nice if beer pong could somehow get easier the more you drink? You know, so you can drink more? [Ty Palowski] has made it so with automated, mind-controlled beer pong.

[Ty] started by making a beer pong table that moves the cups back and forth at both ends. An Arduino Nano controls a stepper that controls a slider, and the cups move with the slider through the magic of magnets. The mind control part came cheaper than you might think. Back in 2009, Mattel released a game called Mind Flex that involves an EEG headset and using brain waves to guide a foam ball on a stream of air through a little obstacle course. These headsets are available for about $12 on ebay, or at least they were before this post went up.

[Ty] cracked open the headset added an HC-06 Bluetooth module to talk to the Arduino. It’s using a program called Brainwave OSC to get the raw data from the headset and break it into levels of concentration and relaxation. The Arduino program monitors the attention levels, and when a certain threshold of focus is reached, it moves the cups back and forth at a predetermined speed ranging from 1 to an impossible-looking 10. Check out the two videos after the break. The first one covers the making of the the automatic beer pong part, and the second is where [Ty] adds mind control.

We’ve seen a different headset — the hacker-friendly NeuroSky Mindwave — pop up a few times. Here’s one that’s been hacked to induce lucid dreaming.

Continue reading “Mind-Controlled Beer Pong Gets Easier As You Drink”

Parkinson’s Spoon Uses Control Theory For Good

When we first saw [Barqunics’] design for a self-stabilizing spoon for people suffering from Parkinson’s disease, we wondered how well something like that could work. But take a look at the video below and you’ll see this does a fine job of responding to the user’s hand movements and keeping the spoon perfectly level through a wide range of motion.

There’s at least one commercial product that attempts to stabilize a spoon in the same way so that people suffering from that affliction can retain a measure of independence. This shows that you don’t need injection molding and factory made boards to prove the concept. An MPU6050 provides sensor information and two servo motors control the spoon using PID control.

PID — short for proportional, integral, derivative — is a way to adjust something to a desired point. For example, consider trying to heat a cup of water to 95 °C. If you simply turn the heater on full blast until you get to 95 °C, the water will actually get hotter because you’ll overshoot. Using PID, the amount of heating provided will depend on how far off you are now (proportional), how far off you’ve been over the long term (integral), and how much change you’ve effected recently (derivative). The same algorithm works for spoon-balancing and many other types of controls.

This isn’t the first bootstrapped assistive spoon project we’ve seen. We even looked at the commercial version, awhile back.

Continue reading “Parkinson’s Spoon Uses Control Theory For Good”