Kaffa Roastery founder Svante Hampf shows a bag of their AI-conic coffee blend.

AI-Created Coffee Blend Isn’t Terrible

Weren’t we just talking about coffee-based sacrilege the other day? Here’s something to make the single-origin bean snobs chew their espresso cups: an artisan roastery in Helsinki is offering a coffee blend created by artificial intelligence called AI-conic. The idea, of course, is that technology will lighten the workload needed to produce coffee.

This is an interesting development because Finland consumes the most coffee in the world, according to the International Coffee Organization. Coffee roasting is a highly-valued traditional artisan profession there, so it stands to reason that they might turn to technology for help.

Just like with scotch whisky, there’s nothing wrong with coffee blends outright. Bean blends are good for consistency, when you want every cup to taste pretty much exactly the same. Single-origin beans, though, are traceable to one location, and as a result, they usually have a distinct flavor based on the climate they’re grown in.

If you’re new to coffee, blends are a nice, safe way to start out. And, interestingly, the AI chose to make the blend out of four different types of beans instead of the usual two or three, despite being tasked with creating a blend that would suit the palates of coffee enthusiasts. But the coffee experts agreed that the AI blend was “perfect” and needed no human intervention. We probably won’t be getting to Finland anytime soon, so if you try it, let us know how it tastes!

Do you like cold brew? How would you like to be able to brew some in just three minutes?

DIY Bimetallic Strip Dings For Teatime

Do you like your cup of tea to be cooled down to exactly 54 C, have a love for machining, and possess more than a little bit of a mad inventor bent? If so, then you have a lot in common with [Chronova Engineering]. In this video, we see him making a fully mechanical chime-ringing tea-temperature indicator – something we’d be tempted to do in silicon, but that’s admittedly pedestrian in comparison.

The (long) video starts off with making a DIY bimetallic strip out of titanium and brass, which it pretty fun. After some math, it is tested in a cup of hot water to ballpark the deflection. Fast-forward through twenty minutes of machining, and you get to the reveal: a tippy cup that drops a bearing onto a bell when the deflection backs off enough to indicate that the set temperature has been reached. Rube Goldberg would have been proud.

OK, so this is bonkers enough. But would you believe a bimetallic strip can be used as a voltage regulator? How many other wacky uses for this niche tech do you know?

Thanks [Itay] for the tip!

Almost Making A Camera Sensor From Scratch

On our travels round the hardware world we’ve encountered more than one group pursuing the goal of making their own silicon integrated circuits, and indeed we’ve seen [Sam Zeloof] producing some of the first practical home-made devices. But silicon is simply one of many different semiconductor materials, and it’s possible to make working semiconductor devices in a less complex lab using some of the others. As an example, [Breaking Taps] has been working with copper (II) oxide, producing photodiodes, and coming within touching distance of a working matrix array.

The video below the break is a comprehensive primer on simple semiconductor production and the challenges of producing copper (II) oxide rather than the lower temperature copper (I) oxide. The devices made have a Schottky junction between the semiconductor and an aluminium conductor, and after some concerns about whether the silicon substrate is part of the circuit and even some spectacular destruction of devices, he has a working photodiode with a satisfying change on the curve tracer when light is applied. The finale is an array of the devices to form a rudimentary camera sensor, but sadly due to alignment issues it’s not quite there  yet. We look forward to seeing it when he solves those problems.

As we’ve seen before, copper oxide isn’t the only semiconductor material outside the silicon envelope.

Continue reading “Almost Making A Camera Sensor From Scratch”

Wine In Beverage Cans Had A Rotten Egg Problem, Until Now

Aluminum beverage cans are used for all kinds of drinks, but when it comes to wine there are some glitches. Chief among them is the fact that canned wine occasionally smelled like rotten eggs. Thankfully, researchers have figured out why that happens, and how to stop it. How was this determined? As the image above hints at, lots and lots of samples and testing.

What causes this, and why don’t other beverages have this problem? Testing revealed that the single most important factor was the presence of molecular sulfur dioxide (SO2), a compound commonly used in winemaking as an antioxidant and antimicrobial.

It turns out that the thin plastic lining on the inside of beverage cans doesn’t fully stop molecular SO2 from reacting with the surrounding aluminum, creating hydrogen sulfide (H2S) in the process. H2S has a very noticeable rotten egg smell, even in low concentrations.

Researchers discovered that if a canned beverage contained more than 0.5 ppm of molecular SO2, a noticeable increase in hydrogen sulfide was likely to be present within four to eight months. The problem is that since most wines aim for around 0.5 ppm of SO2, the average can on wine sitting on a shelf will have a problem sooner rather than later. The more SO2 in the wine (reds tend to contain less, whites more), the worse the problem.

Simply increasing the thickness of the plastic liner is an imperfect solution since it increases manufacturing costs as well as waste. So, researchers believe the right move is to use a more durable liner formulation combined with a lower SO2 concentration than winemakers are usually comfortable with. Unlike bottles, cans can be hermetically sealed which should offset the increased oxidation risk of using a lower concentration of SO2. The result should be wine as a canned beverage, with a shelf life of at least 8 months.

The research is published here and gives a great look at just how one approaches this kind of scientific problem, as well as highlighting just how interesting the humble aluminum beverage can really is.

Implantable Battery Charges Itself

Battery technology is the major limiting factor for the large-scale adoption of electric vehicles and grid-level energy storage. Marginal improvements have been made for lithium cells in the past decade but the technology has arguably been fairly stagnant, at least on massive industrial scales. At smaller levels there have been some more outside-of-the-box developments for things like embedded systems and, at least in the case of this battery that can recharge itself, implantable batteries for medical devices.

The tiny battery uses sodium and gold for the anode and cathode, and takes oxygen from the body to complete the chemical reaction. With a virtually unlimited supply of oxygen available to it, the battery essentially never needs to be replaced or recharged. In lab tests, it took a bit of time for the implant site to heal before there was a reliable oxygen supply, though, but once healing was complete the battery’s performance leveled off.

Currently the tiny batteries have only been tested in rats as a proof-of-concept to demonstrate the chemistry and electricity generation capabilities, but there didn’t appear to be any adverse consequences. Technology like this could be a big improvement for implanted devices like pacemakers if it can scale up, and could even help fight diseases and improve healing times. For some more background on implantable devices, [Dan Maloney] catches us up on the difficulties of building and powering replacement hearts for humans.

A line-art diagram of the microfluidic device. On the left, in red text, it says "Fibrillization trigger (CPB pH 5.0). There is a rectangular outline of the chip in grey, with a sideways trapezoid on the left side narrowing until it becomes an arrow on the right. At the right is an inset picture of the semi-transparent microfluidic chip and the text "Negative Pressure (Pultrusion)." Above the trapezoid is the green text "MaSp2 solution" and below is "LLPS trigger (CPB pH 7.0)" in purple. The green, purple, and red text correspond with inlets labeld 1, 2, and 3, respectively. Three regions along the arrow-like channel from left to right are labeled "LLPS region," "pH drop," and in a much longer final section "Fiber assembly region."

Synthetic Spider Silk

While spider silk proteins are something you can make in your garage, making useful drag line fibers has proved a daunting challenge. Now, a team of scientists from Japan and Hong Kong are closer to replicating artificial spider silk using microfluidics.

Based on how spiders spin their silk, the researchers designed a microfluidic device to replicate the chemical and physical gradients present in the spider. By varying the amount of shear and chemical triggers, they tuned the nanostructure of the fiber to recreate the “hierarchical nanoscale substructure, which is the hallmark of native silk self-assembly.”

We have to admit, keeping a small bank of these clear, rectangular devices on our desk seems like a lot less work than keeping an army of spiders fed and entertained to produce spider silk Hackaday swag. We shouldn’t expect to see a desktop microfluidic spider silk machine this year, but we’re getting closer and closer. While you wait, why not learn from spiders how to make better 3D prints?

If you’re interesting in making your own spider silk proteins, checkout how [Justin Atkin] and [The Thought Emporium] have done it with yeast. Want to make your spider farm spiders have stronger silk? Try augmenting it with carbon.

Flux, From Scratch

Soldering flux is (or at least, should be) one of the ubiquitous features of any electronics bench. It serves the purpose of excluding oxygen from a solder joint as it solidifies, and in most cases its base is derived from pine rosin. Most of us just buy flux, but [pileofstuff] is having a go at making his own.

He starts with a block of rosin and a couple of different solvents. Isopropanol we’re happy with, but perhaps using methanol for something to be vaporized within breathing distance isn’t something we’d do. At about 25% rosin to solvent ratio the result is a yellow liquid flux, which he tests against some commercial fluxes. The result is a reasonable liquid flux, something which perhaps shouldn’t be too much of a surprise, and is a handy piece of information to store away should we ever be MacGuyver-like stuck in a pine forest with a need to save the day with electronics.

It would be interesting to try the same technique but with a solvent selected to soften the rosin for a paste flux, and perhaps any chemists among our readership could enlighten us about just what rosin is beside the heavy fractions left after extracting the volatiles from pine resin.

In the past we’ve taken a close look at how solder really works.

Continue reading “Flux, From Scratch”